Metamath Proof Explorer


Theorem gruina

Description: If a Grothendieck universe U is nonempty, then the height of the ordinals in U is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Hypothesis gruina.1 A=UOn
Assertion gruina UUnivUAInacc

Proof

Step Hyp Ref Expression
1 gruina.1 A=UOn
2 n0 UxxU
3 0ss x
4 gruss UUnivxUxU
5 3 4 mp3an3 UUnivxUU
6 0elon On
7 elin UOnUOn
8 5 6 7 sylanblrc UUnivxUUOn
9 8 1 eleqtrrdi UUnivxUA
10 9 ne0d UUnivxUA
11 10 expcom xUUUnivA
12 11 exlimiv xxUUUnivA
13 2 12 sylbi UUUnivA
14 13 impcom UUnivUA
15 grutr UUnivTrU
16 tron TrOn
17 trin TrUTrOnTrUOn
18 15 16 17 sylancl UUnivTrUOn
19 inss2 UOnOn
20 epweon EWeOn
21 wess UOnOnEWeOnEWeUOn
22 19 20 21 mp2 EWeUOn
23 df-ord OrdUOnTrUOnEWeUOn
24 18 22 23 sylanblrc UUnivOrdUOn
25 inex1g UUnivUOnV
26 elon2 UOnOnOrdUOnUOnV
27 24 25 26 sylanbrc UUnivUOnOn
28 1 27 eqeltrid UUnivAOn
29 28 adantr UUnivUAOn
30 eloni AOnOrdA
31 ordirr OrdA¬AA
32 30 31 syl AOn¬AA
33 elin AUOnAUAOn
34 33 biimpri AUAOnAUOn
35 34 1 eleqtrrdi AUAOnAA
36 35 expcom AOnAUAA
37 32 36 mtod AOn¬AU
38 29 37 syl UUnivU¬AU
39 inss1 UOnU
40 1 39 eqsstri AU
41 40 sseli xAxU
42 vpwex 𝒫xV
43 42 canth2 𝒫x𝒫𝒫x
44 42 pwex 𝒫𝒫xV
45 44 cardid card𝒫𝒫x𝒫𝒫x
46 45 ensymi 𝒫𝒫xcard𝒫𝒫x
47 28 adantr UUnivxUAOn
48 grupw UUnivxU𝒫xU
49 grupw UUniv𝒫xU𝒫𝒫xU
50 48 49 syldan UUnivxU𝒫𝒫xU
51 28 adantr UUniv𝒫𝒫xUAOn
52 endom card𝒫𝒫x𝒫𝒫xcard𝒫𝒫x𝒫𝒫x
53 45 52 ax-mp card𝒫𝒫x𝒫𝒫x
54 cardon card𝒫𝒫xOn
55 grudomon UUnivcard𝒫𝒫xOn𝒫𝒫xUcard𝒫𝒫x𝒫𝒫xcard𝒫𝒫xU
56 54 55 mp3an2 UUniv𝒫𝒫xUcard𝒫𝒫x𝒫𝒫xcard𝒫𝒫xU
57 53 56 mpanr2 UUniv𝒫𝒫xUcard𝒫𝒫xU
58 elin card𝒫𝒫xUOncard𝒫𝒫xUcard𝒫𝒫xOn
59 58 biimpri card𝒫𝒫xUcard𝒫𝒫xOncard𝒫𝒫xUOn
60 59 1 eleqtrrdi card𝒫𝒫xUcard𝒫𝒫xOncard𝒫𝒫xA
61 57 54 60 sylancl UUniv𝒫𝒫xUcard𝒫𝒫xA
62 onelss AOncard𝒫𝒫xAcard𝒫𝒫xA
63 51 61 62 sylc UUniv𝒫𝒫xUcard𝒫𝒫xA
64 50 63 syldan UUnivxUcard𝒫𝒫xA
65 ssdomg AOncard𝒫𝒫xAcard𝒫𝒫xA
66 47 64 65 sylc UUnivxUcard𝒫𝒫xA
67 endomtr 𝒫𝒫xcard𝒫𝒫xcard𝒫𝒫xA𝒫𝒫xA
68 46 66 67 sylancr UUnivxU𝒫𝒫xA
69 sdomdomtr 𝒫x𝒫𝒫x𝒫𝒫xA𝒫xA
70 43 68 69 sylancr UUnivxU𝒫xA
71 41 70 sylan2 UUnivxA𝒫xA
72 71 ralrimiva UUnivxA𝒫xA
73 inawinalem AOnxA𝒫xAxAyAxy
74 28 72 73 sylc UUnivxAyAxy
75 74 adantr UUnivUxAyAxy
76 winainflem AAOnxAyAxyωA
77 14 29 75 76 syl3anc UUnivUωA
78 vex xV
79 78 canth2 x𝒫x
80 sdomtr x𝒫x𝒫xAxA
81 79 71 80 sylancr UUnivxAxA
82 81 ralrimiva UUnivxAxA
83 iscard cardA=AAOnxAxA
84 28 82 83 sylanbrc UUnivcardA=A
85 cardlim ωcardALimcardA
86 sseq2 cardA=AωcardAωA
87 limeq cardA=ALimcardALimA
88 86 87 bibi12d cardA=AωcardALimcardAωALimA
89 85 88 mpbii cardA=AωALimA
90 84 89 syl UUnivωALimA
91 90 adantr UUnivUωALimA
92 77 91 mpbid UUnivULimA
93 cflm AOnLimAcfA=x|yx=cardyyAA=y
94 29 92 93 syl2anc UUnivUcfA=x|yx=cardyyAA=y
95 cardon cardyOn
96 eleq1 x=cardyxOncardyOn
97 95 96 mpbiri x=cardyxOn
98 97 adantr x=cardyyAA=yxOn
99 98 exlimiv yx=cardyyAA=yxOn
100 99 abssi x|yx=cardyyAA=yOn
101 fvex cfAV
102 94 101 eqeltrrdi UUnivUx|yx=cardyyAA=yV
103 intex x|yx=cardyyAA=yx|yx=cardyyAA=yV
104 102 103 sylibr UUnivUx|yx=cardyyAA=y
105 onint x|yx=cardyyAA=yOnx|yx=cardyyAA=yx|yx=cardyyAA=yx|yx=cardyyAA=y
106 100 104 105 sylancr UUnivUx|yx=cardyyAA=yx|yx=cardyyAA=y
107 94 106 eqeltrd UUnivUcfAx|yx=cardyyAA=y
108 eqeq1 x=cfAx=cardycfA=cardy
109 108 anbi1d x=cfAx=cardyyAA=ycfA=cardyyAA=y
110 109 exbidv x=cfAyx=cardyyAA=yycfA=cardyyAA=y
111 101 110 elab cfAx|yx=cardyyAA=yycfA=cardyyAA=y
112 107 111 sylib UUnivUycfA=cardyyAA=y
113 simp2rr UUnivUcfA=cardyyAA=ycfAAA=y
114 simp1l UUnivUcfA=cardyyAA=ycfAAUUniv
115 simp2rl UUnivUcfA=cardyyAA=ycfAAyA
116 115 40 sstrdi UUnivUcfA=cardyyAA=ycfAAyU
117 40 sseli cfAAcfAU
118 117 3ad2ant3 UUnivUcfA=cardyyAA=ycfAAcfAU
119 simp2l UUnivUcfA=cardyyAA=ycfAAcfA=cardy
120 vex yV
121 120 cardid cardyy
122 119 121 eqbrtrdi UUnivUcfA=cardyyAA=ycfAAcfAy
123 gruen UUnivyUcfAUcfAyyU
124 114 116 118 122 123 syl112anc UUnivUcfA=cardyyAA=ycfAAyU
125 gruuni UUnivyUyU
126 114 124 125 syl2anc UUnivUcfA=cardyyAA=ycfAAyU
127 113 126 eqeltrd UUnivUcfA=cardyyAA=ycfAAAU
128 127 3exp UUnivUcfA=cardyyAA=ycfAAAU
129 128 exlimdv UUnivUycfA=cardyyAA=ycfAAAU
130 112 129 mpd UUnivUcfAAAU
131 38 130 mtod UUnivU¬cfAA
132 cfon cfAOn
133 cfle cfAA
134 onsseleq cfAOnAOncfAAcfAAcfA=A
135 133 134 mpbii cfAOnAOncfAAcfA=A
136 132 135 mpan AOncfAAcfA=A
137 136 ord AOn¬cfAAcfA=A
138 29 131 137 sylc UUnivUcfA=A
139 72 adantr UUnivUxA𝒫xA
140 elina AInaccAcfA=AxA𝒫xA
141 14 138 139 140 syl3anbrc UUnivUAInacc