Metamath Proof Explorer


Theorem hauspwpwf1

Description: Lemma for hauspwpwdom . Points in the closure of a set in a Hausdorff space are characterized by the open neighborhoods they extend into the generating set. (Contributed by Mario Carneiro, 28-Jul-2015)

Ref Expression
Hypotheses hauspwpwf1.x X=J
hauspwpwf1.f F=xclsJAa|jJxja=jA
Assertion hauspwpwf1 JHausAXF:clsJA1-1𝒫𝒫A

Proof

Step Hyp Ref Expression
1 hauspwpwf1.x X=J
2 hauspwpwf1.f F=xclsJAa|jJxja=jA
3 inss2 jAA
4 vex jV
5 4 inex1 jAV
6 5 elpw jA𝒫AjAA
7 3 6 mpbir jA𝒫A
8 eleq1 a=jAa𝒫AjA𝒫A
9 7 8 mpbiri a=jAa𝒫A
10 9 adantl xja=jAa𝒫A
11 10 rexlimivw jJxja=jAa𝒫A
12 11 abssi a|jJxja=jA𝒫A
13 haustop JHausJTop
14 1 topopn JTopXJ
15 13 14 syl JHausXJ
16 ssexg AXXJAV
17 15 16 sylan2 AXJHausAV
18 17 ancoms JHausAXAV
19 pwexg AV𝒫AV
20 elpw2g 𝒫AVa|jJxja=jA𝒫𝒫Aa|jJxja=jA𝒫A
21 18 19 20 3syl JHausAXa|jJxja=jA𝒫𝒫Aa|jJxja=jA𝒫A
22 12 21 mpbiri JHausAXa|jJxja=jA𝒫𝒫A
23 22 a1d JHausAXxclsJAa|jJxja=jA𝒫𝒫A
24 simplll JHausAXxclsJAyclsJAxyJHaus
25 1 clsss3 JTopAXclsJAX
26 13 25 sylan JHausAXclsJAX
27 26 ad2antrr JHausAXxclsJAyclsJAxyclsJAX
28 simplrl JHausAXxclsJAyclsJAxyxclsJA
29 27 28 sseldd JHausAXxclsJAyclsJAxyxX
30 simplrr JHausAXxclsJAyclsJAxyyclsJA
31 27 30 sseldd JHausAXxclsJAyclsJAxyyX
32 simpr JHausAXxclsJAyclsJAxyxy
33 1 hausnei JHausxXyXxykJlJxkylkl=
34 24 29 31 32 33 syl13anc JHausAXxclsJAyclsJAxykJlJxkylkl=
35 simprll JHausAXxclsJAyclsJAxykJlJxkylkl=kJ
36 simprr1 JHausAXxclsJAyclsJAxykJlJxkylkl=xk
37 eqidd JHausAXxclsJAyclsJAxykJlJxkylkl=kA=kA
38 elequ2 j=kxjxk
39 ineq1 j=kjA=kA
40 39 eqeq2d j=kkA=jAkA=kA
41 38 40 anbi12d j=kxjkA=jAxkkA=kA
42 41 rspcev kJxkkA=kAjJxjkA=jA
43 35 36 37 42 syl12anc JHausAXxclsJAyclsJAxykJlJxkylkl=jJxjkA=jA
44 vex kV
45 44 inex1 kAV
46 eqeq1 a=kAa=jAkA=jA
47 46 anbi2d a=kAxja=jAxjkA=jA
48 47 rexbidv a=kAjJxja=jAjJxjkA=jA
49 45 48 elab kAa|jJxja=jAjJxjkA=jA
50 43 49 sylibr JHausAXxclsJAyclsJAxykJlJxkylkl=kAa|jJxja=jA
51 13 ad2antrr JHausAXxclsJAyclsJAJTop
52 51 ad3antrrr JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjJTop
53 simplr JHausAXxclsJAyclsJAAX
54 53 ad3antrrr JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjAX
55 simprr JHausAXxclsJAyclsJAyclsJA
56 55 ad3antrrr JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjyclsJA
57 simplr kJlJxkylkl=lJ
58 57 ad2antlr JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjlJ
59 simprl JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjjJ
60 inopn JToplJjJljJ
61 52 58 59 60 syl3anc JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjljJ
62 simpr2 kJlJxkylkl=yl
63 62 ad2antlr JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjyl
64 simprr JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjyj
65 63 64 elind JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjylj
66 1 clsndisj JTopAXyclsJAljJyljljA
67 52 54 56 61 65 66 syl32anc JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjljA
68 n0 ljAzzljA
69 67 68 sylib JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzzljA
70 elin zljAzljzA
71 elin zljzlzj
72 71 anbi1i zljzAzlzjzA
73 70 72 bitri zljAzlzjzA
74 elin zjAzjzA
75 74 biimpri zjzAzjA
76 75 adantll zlzjzAzjA
77 76 ad2antll JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzlzjzAzjA
78 simpll zlzjzAzl
79 78 ad2antll JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzlzjzAzl
80 simpr3 kJlJxkylkl=kl=
81 80 ad2antlr JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzlzjzAkl=
82 minel zlkl=¬zk
83 elinel1 zkAzk
84 82 83 nsyl zlkl=¬zkA
85 79 81 84 syl2anc JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzlzjzA¬zkA
86 nelneq2 zjA¬zkA¬jA=kA
87 77 85 86 syl2anc JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzlzjzA¬jA=kA
88 eqcom jA=kAkA=jA
89 87 88 sylnib JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzlzjzA¬kA=jA
90 89 expr JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzlzjzA¬kA=jA
91 73 90 biimtrid JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzljA¬kA=jA
92 91 exlimdv JHausAXxclsJAyclsJAxykJlJxkylkl=jJyjzzljA¬kA=jA
93 69 92 mpd JHausAXxclsJAyclsJAxykJlJxkylkl=jJyj¬kA=jA
94 93 anassrs JHausAXxclsJAyclsJAxykJlJxkylkl=jJyj¬kA=jA
95 nan JHausAXxclsJAyclsJAxykJlJxkylkl=jJ¬yjkA=jAJHausAXxclsJAyclsJAxykJlJxkylkl=jJyj¬kA=jA
96 94 95 mpbir JHausAXxclsJAyclsJAxykJlJxkylkl=jJ¬yjkA=jA
97 96 nrexdv JHausAXxclsJAyclsJAxykJlJxkylkl=¬jJyjkA=jA
98 46 anbi2d a=kAyja=jAyjkA=jA
99 98 rexbidv a=kAjJyja=jAjJyjkA=jA
100 45 99 elab kAa|jJyja=jAjJyjkA=jA
101 97 100 sylnibr JHausAXxclsJAyclsJAxykJlJxkylkl=¬kAa|jJyja=jA
102 nelne1 kAa|jJxja=jA¬kAa|jJyja=jAa|jJxja=jAa|jJyja=jA
103 50 101 102 syl2anc JHausAXxclsJAyclsJAxykJlJxkylkl=a|jJxja=jAa|jJyja=jA
104 103 expr JHausAXxclsJAyclsJAxykJlJxkylkl=a|jJxja=jAa|jJyja=jA
105 104 rexlimdvva JHausAXxclsJAyclsJAxykJlJxkylkl=a|jJxja=jAa|jJyja=jA
106 34 105 mpd JHausAXxclsJAyclsJAxya|jJxja=jAa|jJyja=jA
107 106 ex JHausAXxclsJAyclsJAxya|jJxja=jAa|jJyja=jA
108 107 necon4d JHausAXxclsJAyclsJAa|jJxja=jA=a|jJyja=jAx=y
109 eleq1 x=yxjyj
110 109 anbi1d x=yxja=jAyja=jA
111 110 rexbidv x=yjJxja=jAjJyja=jA
112 111 abbidv x=ya|jJxja=jA=a|jJyja=jA
113 108 112 impbid1 JHausAXxclsJAyclsJAa|jJxja=jA=a|jJyja=jAx=y
114 113 ex JHausAXxclsJAyclsJAa|jJxja=jA=a|jJyja=jAx=y
115 23 114 dom2lem JHausAXxclsJAa|jJxja=jA:clsJA1-1𝒫𝒫A
116 f1eq1 F=xclsJAa|jJxja=jAF:clsJA1-1𝒫𝒫AxclsJAa|jJxja=jA:clsJA1-1𝒫𝒫A
117 2 116 ax-mp F:clsJA1-1𝒫𝒫AxclsJAa|jJxja=jA:clsJA1-1𝒫𝒫A
118 115 117 sylibr JHausAXF:clsJA1-1𝒫𝒫A