| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hauspwpwf1.x |  | 
						
							| 2 |  | hauspwpwf1.f |  | 
						
							| 3 |  | inss2 |  | 
						
							| 4 |  | vex |  | 
						
							| 5 | 4 | inex1 |  | 
						
							| 6 | 5 | elpw |  | 
						
							| 7 | 3 6 | mpbir |  | 
						
							| 8 |  | eleq1 |  | 
						
							| 9 | 7 8 | mpbiri |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 10 | rexlimivw |  | 
						
							| 12 | 11 | abssi |  | 
						
							| 13 |  | haustop |  | 
						
							| 14 | 1 | topopn |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 |  | ssexg |  | 
						
							| 17 | 15 16 | sylan2 |  | 
						
							| 18 | 17 | ancoms |  | 
						
							| 19 |  | pwexg |  | 
						
							| 20 |  | elpw2g |  | 
						
							| 21 | 18 19 20 | 3syl |  | 
						
							| 22 | 12 21 | mpbiri |  | 
						
							| 23 | 22 | a1d |  | 
						
							| 24 |  | simplll |  | 
						
							| 25 | 1 | clsss3 |  | 
						
							| 26 | 13 25 | sylan |  | 
						
							| 27 | 26 | ad2antrr |  | 
						
							| 28 |  | simplrl |  | 
						
							| 29 | 27 28 | sseldd |  | 
						
							| 30 |  | simplrr |  | 
						
							| 31 | 27 30 | sseldd |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 1 | hausnei |  | 
						
							| 34 | 24 29 31 32 33 | syl13anc |  | 
						
							| 35 |  | simprll |  | 
						
							| 36 |  | simprr1 |  | 
						
							| 37 |  | eqidd |  | 
						
							| 38 |  | elequ2 |  | 
						
							| 39 |  | ineq1 |  | 
						
							| 40 | 39 | eqeq2d |  | 
						
							| 41 | 38 40 | anbi12d |  | 
						
							| 42 | 41 | rspcev |  | 
						
							| 43 | 35 36 37 42 | syl12anc |  | 
						
							| 44 |  | vex |  | 
						
							| 45 | 44 | inex1 |  | 
						
							| 46 |  | eqeq1 |  | 
						
							| 47 | 46 | anbi2d |  | 
						
							| 48 | 47 | rexbidv |  | 
						
							| 49 | 45 48 | elab |  | 
						
							| 50 | 43 49 | sylibr |  | 
						
							| 51 | 13 | ad2antrr |  | 
						
							| 52 | 51 | ad3antrrr |  | 
						
							| 53 |  | simplr |  | 
						
							| 54 | 53 | ad3antrrr |  | 
						
							| 55 |  | simprr |  | 
						
							| 56 | 55 | ad3antrrr |  | 
						
							| 57 |  | simplr |  | 
						
							| 58 | 57 | ad2antlr |  | 
						
							| 59 |  | simprl |  | 
						
							| 60 |  | inopn |  | 
						
							| 61 | 52 58 59 60 | syl3anc |  | 
						
							| 62 |  | simpr2 |  | 
						
							| 63 | 62 | ad2antlr |  | 
						
							| 64 |  | simprr |  | 
						
							| 65 | 63 64 | elind |  | 
						
							| 66 | 1 | clsndisj |  | 
						
							| 67 | 52 54 56 61 65 66 | syl32anc |  | 
						
							| 68 |  | n0 |  | 
						
							| 69 | 67 68 | sylib |  | 
						
							| 70 |  | elin |  | 
						
							| 71 |  | elin |  | 
						
							| 72 | 71 | anbi1i |  | 
						
							| 73 | 70 72 | bitri |  | 
						
							| 74 |  | elin |  | 
						
							| 75 | 74 | biimpri |  | 
						
							| 76 | 75 | adantll |  | 
						
							| 77 | 76 | ad2antll |  | 
						
							| 78 |  | simpll |  | 
						
							| 79 | 78 | ad2antll |  | 
						
							| 80 |  | simpr3 |  | 
						
							| 81 | 80 | ad2antlr |  | 
						
							| 82 |  | minel |  | 
						
							| 83 |  | elinel1 |  | 
						
							| 84 | 82 83 | nsyl |  | 
						
							| 85 | 79 81 84 | syl2anc |  | 
						
							| 86 |  | nelneq2 |  | 
						
							| 87 | 77 85 86 | syl2anc |  | 
						
							| 88 |  | eqcom |  | 
						
							| 89 | 87 88 | sylnib |  | 
						
							| 90 | 89 | expr |  | 
						
							| 91 | 73 90 | biimtrid |  | 
						
							| 92 | 91 | exlimdv |  | 
						
							| 93 | 69 92 | mpd |  | 
						
							| 94 | 93 | anassrs |  | 
						
							| 95 |  | nan |  | 
						
							| 96 | 94 95 | mpbir |  | 
						
							| 97 | 96 | nrexdv |  | 
						
							| 98 | 46 | anbi2d |  | 
						
							| 99 | 98 | rexbidv |  | 
						
							| 100 | 45 99 | elab |  | 
						
							| 101 | 97 100 | sylnibr |  | 
						
							| 102 |  | nelne1 |  | 
						
							| 103 | 50 101 102 | syl2anc |  | 
						
							| 104 | 103 | expr |  | 
						
							| 105 | 104 | rexlimdvva |  | 
						
							| 106 | 34 105 | mpd |  | 
						
							| 107 | 106 | ex |  | 
						
							| 108 | 107 | necon4d |  | 
						
							| 109 |  | eleq1 |  | 
						
							| 110 | 109 | anbi1d |  | 
						
							| 111 | 110 | rexbidv |  | 
						
							| 112 | 111 | abbidv |  | 
						
							| 113 | 108 112 | impbid1 |  | 
						
							| 114 | 113 | ex |  | 
						
							| 115 | 23 114 | dom2lem |  | 
						
							| 116 |  | f1eq1 |  | 
						
							| 117 | 2 116 | ax-mp |  | 
						
							| 118 | 115 117 | sylibr |  |