Metamath Proof Explorer


Theorem heibor1

Description: One half of heibor , that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet and total boundedness here, which follows trivially from the fact that the set of all r -balls is an open cover of X , so finitely many cover X . (Contributed by Jeff Madsen, 16-Jan-2014)

Ref Expression
Hypothesis heibor.1 J=MetOpenD
Assertion heibor1 DMetXJCompDCMetXDTotBndX

Proof

Step Hyp Ref Expression
1 heibor.1 J=MetOpenD
2 simpll DMetXJCompxCauDx:XDMetX
3 simplr DMetXJCompxCauDx:XJComp
4 simprl DMetXJCompxCauDx:XxCauD
5 simprr DMetXJCompxCauDx:Xx:X
6 1 2 3 4 5 heibor1lem DMetXJCompxCauDx:XxdomtJ
7 6 expr DMetXJCompxCauDx:XxdomtJ
8 7 ralrimiva DMetXJCompxCauDx:XxdomtJ
9 nnuz =1
10 1zzd DMetXJComp1
11 simpl DMetXJCompDMetX
12 9 1 10 11 iscmet3 DMetXJCompDCMetXxCauDx:XxdomtJ
13 8 12 mpbird DMetXJCompDCMetX
14 simplr DMetXJCompr+JComp
15 metxmet DMetXD∞MetX
16 id zXzX
17 rpxr r+r*
18 1 blopn D∞MetXzXr*zballDrJ
19 15 16 17 18 syl3an DMetXzXr+zballDrJ
20 19 3com23 DMetXr+zXzballDrJ
21 20 3expa DMetXr+zXzballDrJ
22 eleq1a zballDrJy=zballDryJ
23 21 22 syl DMetXr+zXy=zballDryJ
24 23 rexlimdva DMetXr+zXy=zballDryJ
25 24 adantlr DMetXJCompr+zXy=zballDryJ
26 25 abssdv DMetXJCompr+y|zXy=zballDrJ
27 15 ad2antrr DMetXJCompr+D∞MetX
28 1 mopnuni D∞MetXX=J
29 27 28 syl DMetXJCompr+X=J
30 blcntr D∞MetXzXr+zzballDr
31 15 30 syl3an1 DMetXzXr+zzballDr
32 31 3com23 DMetXr+zXzzballDr
33 32 3expa DMetXr+zXzzballDr
34 ovex zballDrV
35 34 elabrex zXzballDry|zXy=zballDr
36 35 adantl DMetXr+zXzballDry|zXy=zballDr
37 elunii zzballDrzballDry|zXy=zballDrzy|zXy=zballDr
38 33 36 37 syl2anc DMetXr+zXzy|zXy=zballDr
39 38 ralrimiva DMetXr+zXzy|zXy=zballDr
40 39 adantlr DMetXJCompr+zXzy|zXy=zballDr
41 nfcv _zX
42 nfre1 zzXy=zballDr
43 42 nfab _zy|zXy=zballDr
44 43 nfuni _zy|zXy=zballDr
45 41 44 dfss3f Xy|zXy=zballDrzXzy|zXy=zballDr
46 40 45 sylibr DMetXJCompr+Xy|zXy=zballDr
47 29 46 eqsstrrd DMetXJCompr+Jy|zXy=zballDr
48 26 unissd DMetXJCompr+y|zXy=zballDrJ
49 47 48 eqssd DMetXJCompr+J=y|zXy=zballDr
50 eqid J=J
51 50 cmpcov JCompy|zXy=zballDrJJ=y|zXy=zballDrx𝒫y|zXy=zballDrFinJ=x
52 14 26 49 51 syl3anc DMetXJCompr+x𝒫y|zXy=zballDrFinJ=x
53 elin x𝒫y|zXy=zballDrFinx𝒫y|zXy=zballDrxFin
54 ancom x𝒫y|zXy=zballDrxFinxFinx𝒫y|zXy=zballDr
55 53 54 bitri x𝒫y|zXy=zballDrFinxFinx𝒫y|zXy=zballDr
56 55 anbi1i x𝒫y|zXy=zballDrFinJ=xxFinx𝒫y|zXy=zballDrJ=x
57 anass xFinx𝒫y|zXy=zballDrJ=xxFinx𝒫y|zXy=zballDrJ=x
58 56 57 bitri x𝒫y|zXy=zballDrFinJ=xxFinx𝒫y|zXy=zballDrJ=x
59 58 rexbii2 x𝒫y|zXy=zballDrFinJ=xxFinx𝒫y|zXy=zballDrJ=x
60 52 59 sylib DMetXJCompr+xFinx𝒫y|zXy=zballDrJ=x
61 ancom x𝒫y|zXy=zballDrJ=xJ=xx𝒫y|zXy=zballDr
62 eqcom x=XX=x
63 29 eqeq1d DMetXJCompr+X=xJ=x
64 62 63 bitr2id DMetXJCompr+J=xx=X
65 64 anbi1d DMetXJCompr+J=xx𝒫y|zXy=zballDrx=Xx𝒫y|zXy=zballDr
66 61 65 bitrid DMetXJCompr+x𝒫y|zXy=zballDrJ=xx=Xx𝒫y|zXy=zballDr
67 elpwi x𝒫y|zXy=zballDrxy|zXy=zballDr
68 ssabral xy|zXy=zballDryxzXy=zballDr
69 67 68 sylib x𝒫y|zXy=zballDryxzXy=zballDr
70 69 anim2i x=Xx𝒫y|zXy=zballDrx=XyxzXy=zballDr
71 66 70 syl6bi DMetXJCompr+x𝒫y|zXy=zballDrJ=xx=XyxzXy=zballDr
72 71 reximdv DMetXJCompr+xFinx𝒫y|zXy=zballDrJ=xxFinx=XyxzXy=zballDr
73 60 72 mpd DMetXJCompr+xFinx=XyxzXy=zballDr
74 73 ralrimiva DMetXJCompr+xFinx=XyxzXy=zballDr
75 istotbnd DTotBndXDMetXr+xFinx=XyxzXy=zballDr
76 11 74 75 sylanbrc DMetXJCompDTotBndX
77 13 76 jca DMetXJCompDCMetXDTotBndX