Metamath Proof Explorer


Theorem i1fmulc

Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses i1fmulc.2 φFdom1
i1fmulc.3 φA
Assertion i1fmulc φ×A×fFdom1

Proof

Step Hyp Ref Expression
1 i1fmulc.2 φFdom1
2 i1fmulc.3 φA
3 reex V
4 3 a1i φA=0V
5 i1ff Fdom1F:
6 1 5 syl φF:
7 6 adantr φA=0F:
8 2 adantr φA=0A
9 0red φA=00
10 simplr φA=0xA=0
11 10 oveq1d φA=0xAx=0x
12 mul02lem2 x0x=0
13 12 adantl φA=0x0x=0
14 11 13 eqtrd φA=0xAx=0
15 4 7 8 9 14 caofid2 φA=0×A×fF=×0
16 i1f0 ×0dom1
17 15 16 eqeltrdi φA=0×A×fFdom1
18 remulcl xyxy
19 18 adantl φxyxy
20 fconst6g A×A:
21 2 20 syl φ×A:
22 3 a1i φV
23 inidm =
24 19 21 6 22 22 23 off φ×A×fF:
25 24 adantr φA0×A×fF:
26 i1frn Fdom1ranFFin
27 1 26 syl φranFFin
28 ovex AyV
29 eqid yranFAy=yranFAy
30 28 29 fnmpti yranFAyFnranF
31 dffn4 yranFAyFnranFyranFAy:ranFontoranyranFAy
32 30 31 mpbi yranFAy:ranFontoranyranFAy
33 fofi ranFFinyranFAy:ranFontoranyranFAyranyranFAyFin
34 27 32 33 sylancl φranyranFAyFin
35 id wranFwranF
36 elsni xAx=A
37 36 oveq1d xAxw=Aw
38 oveq2 y=wAy=Aw
39 38 rspceeqv wranFxw=AwyranFxw=Ay
40 35 37 39 syl2anr xAwranFyranFxw=Ay
41 ovex xwV
42 eqeq1 z=xwz=Ayxw=Ay
43 42 rexbidv z=xwyranFz=AyyranFxw=Ay
44 41 43 elab xwz|yranFz=AyyranFxw=Ay
45 40 44 sylibr xAwranFxwz|yranFz=Ay
46 45 adantl φxAwranFxwz|yranFz=Ay
47 fconstg A×A:A
48 2 47 syl φ×A:A
49 6 ffnd φFFn
50 dffn3 FFnF:ranF
51 49 50 sylib φF:ranF
52 46 48 51 22 22 23 off φ×A×fF:z|yranFz=Ay
53 52 frnd φran×A×fFz|yranFz=Ay
54 29 rnmpt ranyranFAy=z|yranFz=Ay
55 53 54 sseqtrrdi φran×A×fFranyranFAy
56 34 55 ssfid φran×A×fFFin
57 56 adantr φA0ran×A×fFFin
58 24 frnd φran×A×fF
59 58 ssdifssd φran×A×fF0
60 59 adantr φA0ran×A×fF0
61 60 sselda φA0yran×A×fF0y
62 1 2 i1fmulclem φA0y×A×fF-1y=F-1yA
63 61 62 syldan φA0yran×A×fF0×A×fF-1y=F-1yA
64 i1fima Fdom1F-1yAdomvol
65 1 64 syl φF-1yAdomvol
66 65 ad2antrr φA0yran×A×fF0F-1yAdomvol
67 63 66 eqeltrd φA0yran×A×fF0×A×fF-1ydomvol
68 63 fveq2d φA0yran×A×fF0vol×A×fF-1y=volF-1yA
69 1 ad2antrr φA0yran×A×fF0Fdom1
70 2 ad2antrr φA0yran×A×fF0A
71 simplr φA0yran×A×fF0A0
72 61 70 71 redivcld φA0yran×A×fF0yA
73 61 recnd φA0yran×A×fF0y
74 70 recnd φA0yran×A×fF0A
75 eldifsni yran×A×fF0y0
76 75 adantl φA0yran×A×fF0y0
77 73 74 76 71 divne0d φA0yran×A×fF0yA0
78 eldifsn yA0yAyA0
79 72 77 78 sylanbrc φA0yran×A×fF0yA0
80 i1fima2sn Fdom1yA0volF-1yA
81 69 79 80 syl2anc φA0yran×A×fF0volF-1yA
82 68 81 eqeltrd φA0yran×A×fF0vol×A×fF-1y
83 25 57 67 82 i1fd φA0×A×fFdom1
84 17 83 pm2.61dane φ×A×fFdom1