Metamath Proof Explorer


Theorem incexc

Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. This is Metamath 100 proof #96. (Contributed by Mario Carneiro, 7-Aug-2017)

Ref Expression
Assertion incexc AFinAFinA=s𝒫A1s1s

Proof

Step Hyp Ref Expression
1 unifi AFinAFinAFin
2 hashcl AFinA0
3 2 nn0cnd AFinA
4 1 3 syl AFinAFinA
5 simpl AFinAFinAFin
6 pwfi AFin𝒫AFin
7 5 6 sylib AFinAFin𝒫AFin
8 diffi 𝒫AFin𝒫AFin
9 7 8 syl AFinAFin𝒫AFin
10 1cnd AFinAFins𝒫A1
11 10 negcld AFinAFins𝒫A1
12 eldifsni s𝒫As
13 12 adantl AFinAFins𝒫As
14 eldifi s𝒫As𝒫A
15 elpwi s𝒫AsA
16 14 15 syl s𝒫AsA
17 ssfi AFinsAsFin
18 5 16 17 syl2an AFinAFins𝒫AsFin
19 hashnncl sFinss
20 18 19 syl AFinAFins𝒫Ass
21 13 20 mpbird AFinAFins𝒫As
22 nnm1nn0 ss10
23 21 22 syl AFinAFins𝒫As10
24 11 23 expcld AFinAFins𝒫A1s1
25 16 adantl AFinAFins𝒫AsA
26 simplr AFinAFins𝒫AAFin
27 25 26 sstrd AFinAFins𝒫AsFin
28 unifi sFinsFinsFin
29 18 27 28 syl2anc AFinAFins𝒫AsFin
30 intssuni sss
31 13 30 syl AFinAFins𝒫Ass
32 29 31 ssfid AFinAFins𝒫AsFin
33 hashcl sFins0
34 32 33 syl AFinAFins𝒫As0
35 34 nn0cnd AFinAFins𝒫As
36 24 35 mulcld AFinAFins𝒫A1s1s
37 9 36 fsumcl AFinAFins𝒫A1s1s
38 disjdif 𝒫A=
39 38 a1i AFinAFin𝒫A=
40 0elpw 𝒫A
41 snssi 𝒫A𝒫A
42 40 41 ax-mp 𝒫A
43 undif 𝒫A𝒫A=𝒫A
44 42 43 mpbi 𝒫A=𝒫A
45 44 eqcomi 𝒫A=𝒫A
46 45 a1i AFinAFin𝒫A=𝒫A
47 1cnd AFinAFins𝒫A1
48 47 negcld AFinAFins𝒫A1
49 5 15 17 syl2an AFinAFins𝒫AsFin
50 hashcl sFins0
51 49 50 syl AFinAFins𝒫As0
52 48 51 expcld AFinAFins𝒫A1s
53 1 adantr AFinAFins𝒫AAFin
54 inss1 AsA
55 ssfi AFinAsAAsFin
56 53 54 55 sylancl AFinAFins𝒫AAsFin
57 hashcl AsFinAs0
58 56 57 syl AFinAFins𝒫AAs0
59 58 nn0cnd AFinAFins𝒫AAs
60 52 59 mulcld AFinAFins𝒫A1sAs
61 39 46 7 60 fsumsplit AFinAFins𝒫A1sAs=s1sAs+s𝒫A1sAs
62 inidm AA=A
63 62 fveq2i AA=A
64 63 oveq2i AAA=AA
65 4 subidd AFinAFinAA=0
66 64 65 eqtrid AFinAFinAAA=0
67 incexclem AFinAFinAAA=s𝒫A1sAs
68 1 67 syldan AFinAFinAAA=s𝒫A1sAs
69 66 68 eqtr3d AFinAFin0=s𝒫A1sAs
70 4 37 negsubd AFinAFinA+s𝒫A1s1s=As𝒫A1s1s
71 0ex V
72 1cnd AFinAFin1
73 72 4 mulcld AFinAFin1A
74 fveq2 s=s=
75 hash0 =0
76 74 75 eqtrdi s=s=0
77 76 oveq2d s=1s=10
78 neg1cn 1
79 exp0 110=1
80 78 79 ax-mp 10=1
81 77 80 eqtrdi s=1s=1
82 rint0 s=As=A
83 82 fveq2d s=As=A
84 81 83 oveq12d s=1sAs=1A
85 84 sumsn V1As1sAs=1A
86 71 73 85 sylancr AFinAFins1sAs=1A
87 4 mullidd AFinAFin1A=A
88 86 87 eqtr2d AFinAFinA=s1sAs
89 9 36 fsumneg AFinAFins𝒫A1s1s=s𝒫A1s1s
90 expm1t 1s1s=1s1-1
91 11 21 90 syl2anc AFinAFins𝒫A1s=1s1-1
92 24 11 mulcomd AFinAFins𝒫A1s1-1=-11s1
93 24 mulm1d AFinAFins𝒫A-11s1=1s1
94 91 92 93 3eqtrd AFinAFins𝒫A1s=1s1
95 25 unissd AFinAFins𝒫AsA
96 31 95 sstrd AFinAFins𝒫AsA
97 sseqin2 sAAs=s
98 96 97 sylib AFinAFins𝒫AAs=s
99 98 fveq2d AFinAFins𝒫AAs=s
100 94 99 oveq12d AFinAFins𝒫A1sAs=1s1s
101 24 35 mulneg1d AFinAFins𝒫A1s1s=1s1s
102 100 101 eqtr2d AFinAFins𝒫A1s1s=1sAs
103 102 sumeq2dv AFinAFins𝒫A1s1s=s𝒫A1sAs
104 89 103 eqtr3d AFinAFins𝒫A1s1s=s𝒫A1sAs
105 88 104 oveq12d AFinAFinA+s𝒫A1s1s=s1sAs+s𝒫A1sAs
106 70 105 eqtr3d AFinAFinAs𝒫A1s1s=s1sAs+s𝒫A1sAs
107 61 69 106 3eqtr4rd AFinAFinAs𝒫A1s1s=0
108 4 37 107 subeq0d AFinAFinA=s𝒫A1s1s