| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unifi |
|
| 2 |
|
hashcl |
|
| 3 |
2
|
nn0cnd |
|
| 4 |
1 3
|
syl |
|
| 5 |
|
simpl |
|
| 6 |
|
pwfi |
|
| 7 |
5 6
|
sylib |
|
| 8 |
|
diffi |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
1cnd |
|
| 11 |
10
|
negcld |
|
| 12 |
|
eldifsni |
|
| 13 |
12
|
adantl |
|
| 14 |
|
eldifi |
|
| 15 |
|
elpwi |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
ssfi |
|
| 18 |
5 16 17
|
syl2an |
|
| 19 |
|
hashnncl |
|
| 20 |
18 19
|
syl |
|
| 21 |
13 20
|
mpbird |
|
| 22 |
|
nnm1nn0 |
|
| 23 |
21 22
|
syl |
|
| 24 |
11 23
|
expcld |
|
| 25 |
16
|
adantl |
|
| 26 |
|
simplr |
|
| 27 |
25 26
|
sstrd |
|
| 28 |
|
unifi |
|
| 29 |
18 27 28
|
syl2anc |
|
| 30 |
|
intssuni |
|
| 31 |
13 30
|
syl |
|
| 32 |
29 31
|
ssfid |
|
| 33 |
|
hashcl |
|
| 34 |
32 33
|
syl |
|
| 35 |
34
|
nn0cnd |
|
| 36 |
24 35
|
mulcld |
|
| 37 |
9 36
|
fsumcl |
|
| 38 |
|
disjdif |
|
| 39 |
38
|
a1i |
|
| 40 |
|
0elpw |
|
| 41 |
|
snssi |
|
| 42 |
40 41
|
ax-mp |
|
| 43 |
|
undif |
|
| 44 |
42 43
|
mpbi |
|
| 45 |
44
|
eqcomi |
|
| 46 |
45
|
a1i |
|
| 47 |
|
1cnd |
|
| 48 |
47
|
negcld |
|
| 49 |
5 15 17
|
syl2an |
|
| 50 |
|
hashcl |
|
| 51 |
49 50
|
syl |
|
| 52 |
48 51
|
expcld |
|
| 53 |
1
|
adantr |
|
| 54 |
|
inss1 |
|
| 55 |
|
ssfi |
|
| 56 |
53 54 55
|
sylancl |
|
| 57 |
|
hashcl |
|
| 58 |
56 57
|
syl |
|
| 59 |
58
|
nn0cnd |
|
| 60 |
52 59
|
mulcld |
|
| 61 |
39 46 7 60
|
fsumsplit |
|
| 62 |
|
inidm |
|
| 63 |
62
|
fveq2i |
|
| 64 |
63
|
oveq2i |
|
| 65 |
4
|
subidd |
|
| 66 |
64 65
|
eqtrid |
|
| 67 |
|
incexclem |
|
| 68 |
1 67
|
syldan |
|
| 69 |
66 68
|
eqtr3d |
|
| 70 |
4 37
|
negsubd |
|
| 71 |
|
0ex |
|
| 72 |
|
1cnd |
|
| 73 |
72 4
|
mulcld |
|
| 74 |
|
fveq2 |
|
| 75 |
|
hash0 |
|
| 76 |
74 75
|
eqtrdi |
|
| 77 |
76
|
oveq2d |
|
| 78 |
|
neg1cn |
|
| 79 |
|
exp0 |
|
| 80 |
78 79
|
ax-mp |
|
| 81 |
77 80
|
eqtrdi |
|
| 82 |
|
rint0 |
|
| 83 |
82
|
fveq2d |
|
| 84 |
81 83
|
oveq12d |
|
| 85 |
84
|
sumsn |
|
| 86 |
71 73 85
|
sylancr |
|
| 87 |
4
|
mullidd |
|
| 88 |
86 87
|
eqtr2d |
|
| 89 |
9 36
|
fsumneg |
|
| 90 |
|
expm1t |
|
| 91 |
11 21 90
|
syl2anc |
|
| 92 |
24 11
|
mulcomd |
|
| 93 |
24
|
mulm1d |
|
| 94 |
91 92 93
|
3eqtrd |
|
| 95 |
25
|
unissd |
|
| 96 |
31 95
|
sstrd |
|
| 97 |
|
sseqin2 |
|
| 98 |
96 97
|
sylib |
|
| 99 |
98
|
fveq2d |
|
| 100 |
94 99
|
oveq12d |
|
| 101 |
24 35
|
mulneg1d |
|
| 102 |
100 101
|
eqtr2d |
|
| 103 |
102
|
sumeq2dv |
|
| 104 |
89 103
|
eqtr3d |
|
| 105 |
88 104
|
oveq12d |
|
| 106 |
70 105
|
eqtr3d |
|
| 107 |
61 69 106
|
3eqtr4rd |
|
| 108 |
4 37 107
|
subeq0d |
|