Metamath Proof Explorer


Theorem itg2monolem3

Description: Lemma for itg2mono . (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses itg2mono.1 G=xsuprannFnx<
itg2mono.2 φnFnMblFn
itg2mono.3 φnFn:0+∞
itg2mono.4 φnFnfFn+1
itg2mono.5 φxynFnxy
itg2mono.6 S=suprann2Fn*<
itg2monolem2.7 φPdom1
itg2monolem2.8 φPfG
itg2monolem2.9 φ¬1PS
Assertion itg2monolem3 φ1PS

Proof

Step Hyp Ref Expression
1 itg2mono.1 G=xsuprannFnx<
2 itg2mono.2 φnFnMblFn
3 itg2mono.3 φnFn:0+∞
4 itg2mono.4 φnFnfFn+1
5 itg2mono.5 φxynFnxy
6 itg2mono.6 S=suprann2Fn*<
7 itg2monolem2.7 φPdom1
8 itg2monolem2.8 φPfG
9 itg2monolem2.9 φ¬1PS
10 1 2 3 4 5 6 7 8 9 itg2monolem2 φS
11 10 adantr φt+S
12 11 recnd φt+S
13 7 adantr φt+Pdom1
14 itg1cl Pdom11P
15 13 14 syl φt+1P
16 15 recnd φt+1P
17 simpr φt+t+
18 17 rpred φt+t
19 11 18 readdcld φt+S+t
20 19 recnd φt+S+t
21 0red φt+0
22 0xr 0*
23 22 a1i φ0*
24 fveq2 n=1Fn=F1
25 24 feq1d n=1Fn:0+∞F1:0+∞
26 icossicc 0+∞0+∞
27 fss Fn:0+∞0+∞0+∞Fn:0+∞
28 3 26 27 sylancl φnFn:0+∞
29 28 ralrimiva φnFn:0+∞
30 1nn 1
31 30 a1i φ1
32 25 29 31 rspcdva φF1:0+∞
33 itg2cl F1:0+∞2F1*
34 32 33 syl φ2F1*
35 itg2cl Fn:0+∞2Fn*
36 28 35 syl φn2Fn*
37 36 fmpttd φn2Fn:*
38 37 frnd φrann2Fn*
39 supxrcl rann2Fn*suprann2Fn*<*
40 38 39 syl φsuprann2Fn*<*
41 6 40 eqeltrid φS*
42 itg2ge0 F1:0+∞02F1
43 32 42 syl φ02F1
44 2fveq3 n=12Fn=2F1
45 eqid n2Fn=n2Fn
46 fvex 2F1V
47 44 45 46 fvmpt 1n2Fn1=2F1
48 30 47 ax-mp n2Fn1=2F1
49 37 ffnd φn2FnFn
50 fnfvelrn n2FnFn1n2Fn1rann2Fn
51 49 30 50 sylancl φn2Fn1rann2Fn
52 48 51 eqeltrrid φ2F1rann2Fn
53 supxrub rann2Fn*2F1rann2Fn2F1suprann2Fn*<
54 38 52 53 syl2anc φ2F1suprann2Fn*<
55 54 6 breqtrrdi φ2F1S
56 23 34 41 43 55 xrletrd φ0S
57 56 adantr φt+0S
58 11 17 ltaddrpd φt+S<S+t
59 21 11 19 57 58 lelttrd φt+0<S+t
60 59 gt0ne0d φt+S+t0
61 12 16 20 60 div23d φt+S1PS+t=SS+t1P
62 11 19 60 redivcld φt+SS+t
63 62 15 remulcld φt+SS+t1P
64 halfre 12
65 ifcl SS+t12if12SS+tSS+t12
66 62 64 65 sylancl φt+if12SS+tSS+t12
67 66 15 remulcld φt+if12SS+tSS+t121P
68 max2 12SS+tSS+tif12SS+tSS+t12
69 64 62 68 sylancr φt+SS+tif12SS+tSS+t12
70 7 14 syl φ1P
71 70 rexrd φ1P*
72 xrltnle S*1P*S<1P¬1PS
73 41 71 72 syl2anc φS<1P¬1PS
74 9 73 mpbird φS<1P
75 74 adantr φt+S<1P
76 21 11 15 57 75 lelttrd φt+0<1P
77 lemul1 SS+tif12SS+tSS+t121P0<1PSS+tif12SS+tSS+t12SS+t1Pif12SS+tSS+t121P
78 62 66 15 76 77 syl112anc φt+SS+tif12SS+tSS+t12SS+t1Pif12SS+tSS+t121P
79 69 78 mpbid φt+SS+t1Pif12SS+tSS+t121P
80 2 adantlr φt+nFnMblFn
81 3 adantlr φt+nFn:0+∞
82 4 adantlr φt+nFnfFn+1
83 5 adantlr φt+xynFnxy
84 64 a1i φt+12
85 halfgt0 0<12
86 85 a1i φt+0<12
87 max1 12SS+t12if12SS+tSS+t12
88 64 62 87 sylancr φt+12if12SS+tSS+t12
89 21 84 66 86 88 ltletrd φt+0<if12SS+tSS+t12
90 20 mulridd φt+S+t1=S+t
91 58 90 breqtrrd φt+S<S+t1
92 1red φt+1
93 ltdivmul S1S+t0<S+tSS+t<1S<S+t1
94 11 92 19 59 93 syl112anc φt+SS+t<1S<S+t1
95 91 94 mpbird φt+SS+t<1
96 halflt1 12<1
97 breq1 SS+t=if12SS+tSS+t12SS+t<1if12SS+tSS+t12<1
98 breq1 12=if12SS+tSS+t1212<1if12SS+tSS+t12<1
99 97 98 ifboth SS+t<112<1if12SS+tSS+t12<1
100 95 96 99 sylancl φt+if12SS+tSS+t12<1
101 1xr 1*
102 elioo2 0*1*if12SS+tSS+t1201if12SS+tSS+t120<if12SS+tSS+t12if12SS+tSS+t12<1
103 22 101 102 mp2an if12SS+tSS+t1201if12SS+tSS+t120<if12SS+tSS+t12if12SS+tSS+t12<1
104 66 89 100 103 syl3anbrc φt+if12SS+tSS+t1201
105 8 adantr φt+PfG
106 fveq2 y=xPy=Px
107 106 oveq2d y=xif12SS+tSS+t12Py=if12SS+tSS+t12Px
108 fveq2 y=xFny=Fnx
109 107 108 breq12d y=xif12SS+tSS+t12PyFnyif12SS+tSS+t12PxFnx
110 109 cbvrabv y|if12SS+tSS+t12PyFny=x|if12SS+tSS+t12PxFnx
111 110 mpteq2i ny|if12SS+tSS+t12PyFny=nx|if12SS+tSS+t12PxFnx
112 1 80 81 82 83 6 104 13 105 11 111 itg2monolem1 φt+if12SS+tSS+t121PS
113 63 67 11 79 112 letrd φt+SS+t1PS
114 61 113 eqbrtrd φt+S1PS+tS
115 11 15 remulcld φt+S1P
116 ledivmul2 S1PSS+t0<S+tS1PS+tSS1PSS+t
117 115 11 19 59 116 syl112anc φt+S1PS+tSS1PSS+t
118 114 117 mpbid φt+S1PSS+t
119 66 15 89 76 mulgt0d φt+0<if12SS+tSS+t121P
120 21 67 11 119 112 ltletrd φt+0<S
121 lemul2 1PS+tS0<S1PS+tS1PSS+t
122 15 19 11 120 121 syl112anc φt+1PS+tS1PSS+t
123 118 122 mpbird φt+1PS+t
124 123 ralrimiva φt+1PS+t
125 alrple 1PS1PSt+1PS+t
126 70 10 125 syl2anc φ1PSt+1PS+t
127 124 126 mpbird φ1PS