Metamath Proof Explorer


Theorem itg2mulc

Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses itg2mulc.2 φF:0+∞
itg2mulc.3 φ2F
itg2mulc.4 φA0+∞
Assertion itg2mulc φ2×A×fF=A2F

Proof

Step Hyp Ref Expression
1 itg2mulc.2 φF:0+∞
2 itg2mulc.3 φ2F
3 itg2mulc.4 φA0+∞
4 1 adantr φ0<AF:0+∞
5 2 adantr φ0<A2F
6 elrege0 A0+∞A0A
7 3 6 sylib φA0A
8 7 simpld φA
9 8 anim1i φ0<AA0<A
10 elrp A+A0<A
11 9 10 sylibr φ0<AA+
12 4 5 11 itg2mulclem φ0<A2×A×fFA2F
13 ge0mulcl x0+∞y0+∞xy0+∞
14 13 adantl φx0+∞y0+∞xy0+∞
15 fconst6g A0+∞×A:0+∞
16 3 15 syl φ×A:0+∞
17 reex V
18 17 a1i φV
19 inidm =
20 14 16 1 18 18 19 off φ×A×fF:0+∞
21 20 adantr φ0<A×A×fF:0+∞
22 icossicc 0+∞0+∞
23 fss ×A×fF:0+∞0+∞0+∞×A×fF:0+∞
24 20 22 23 sylancl φ×A×fF:0+∞
25 24 adantr φ0<A×A×fF:0+∞
26 8 2 remulcld φA2F
27 26 adantr φ0<AA2F
28 itg2lecl ×A×fF:0+∞A2F2×A×fFA2F2×A×fF
29 25 27 12 28 syl3anc φ0<A2×A×fF
30 11 rpreccld φ0<A1A+
31 21 29 30 itg2mulclem φ0<A2×1A×f×A×fF1A2×A×fF
32 4 feqmptd φ0<AF=yFy
33 rge0ssre 0+∞
34 ax-resscn
35 33 34 sstri 0+∞
36 fss F:0+∞0+∞F:
37 1 35 36 sylancl φF:
38 37 adantr φ0<AF:
39 38 ffvelcdmda φ0<AyFy
40 39 mullidd φ0<Ay1Fy=Fy
41 40 mpteq2dva φ0<Ay1Fy=yFy
42 32 41 eqtr4d φ0<AF=y1Fy
43 17 a1i φ0<AV
44 1red φ0<Ay1
45 43 30 11 ofc12 φ0<A×1A×f×A=×1AA
46 fconstmpt ×1AA=y1AA
47 45 46 eqtrdi φ0<A×1A×f×A=y1AA
48 8 recnd φA
49 48 adantr φ0<AA
50 11 rpne0d φ0<AA0
51 49 50 recid2d φ0<A1AA=1
52 51 mpteq2dv φ0<Ay1AA=y1
53 47 52 eqtrd φ0<A×1A×f×A=y1
54 43 44 39 53 32 offval2 φ0<A×1A×f×A×fF=y1Fy
55 30 rpcnd φ0<A1A
56 fconst6g 1A×1A:
57 55 56 syl φ0<A×1A:
58 fconst6g A×A:
59 49 58 syl φ0<A×A:
60 mulass xyzxyz=xyz
61 60 adantl φ0<Axyzxyz=xyz
62 43 57 59 38 61 caofass φ0<A×1A×f×A×fF=×1A×f×A×fF
63 42 54 62 3eqtr2d φ0<AF=×1A×f×A×fF
64 63 fveq2d φ0<A2F=2×1A×f×A×fF
65 29 recnd φ0<A2×A×fF
66 65 49 50 divrec2d φ0<A2×A×fFA=1A2×A×fF
67 31 64 66 3brtr4d φ0<A2F2×A×fFA
68 5 29 11 lemuldiv2d φ0<AA2F2×A×fF2F2×A×fFA
69 67 68 mpbird φ0<AA2F2×A×fF
70 itg2cl ×A×fF:0+∞2×A×fF*
71 24 70 syl φ2×A×fF*
72 26 rexrd φA2F*
73 xrletri3 2×A×fF*A2F*2×A×fF=A2F2×A×fFA2FA2F2×A×fF
74 71 72 73 syl2anc φ2×A×fF=A2F2×A×fFA2FA2F2×A×fF
75 74 adantr φ0<A2×A×fF=A2F2×A×fFA2FA2F2×A×fF
76 12 69 75 mpbir2and φ0<A2×A×fF=A2F
77 17 a1i φ0=AV
78 37 adantr φ0=AF:
79 8 adantr φ0=AA
80 0re 0
81 80 a1i φ0=A0
82 simplr φ0=Ax0=A
83 82 oveq1d φ0=Ax0x=Ax
84 mul02 x0x=0
85 84 adantl φ0=Ax0x=0
86 83 85 eqtr3d φ0=AxAx=0
87 77 78 79 81 86 caofid2 φ0=A×A×fF=×0
88 87 fveq2d φ0=A2×A×fF=2×0
89 itg20 2×0=0
90 88 89 eqtrdi φ0=A2×A×fF=0
91 2 adantr φ0=A2F
92 91 recnd φ0=A2F
93 92 mul02d φ0=A02F=0
94 simpr φ0=A0=A
95 94 oveq1d φ0=A02F=A2F
96 90 93 95 3eqtr2d φ0=A2×A×fF=A2F
97 7 simprd φ0A
98 leloe 0A0A0<A0=A
99 80 8 98 sylancr φ0A0<A0=A
100 97 99 mpbid φ0<A0=A
101 76 96 100 mpjaodan φ2×A×fF=A2F