Metamath Proof Explorer


Theorem limciun

Description: A point is a limit of F on the finite union U_ x e. A B ( x ) iff it is the limit of the restriction of F to each B ( x ) . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses limciun.1 φ A Fin
limciun.2 φ x A B
limciun.3 φ F : x A B
limciun.4 φ C
Assertion limciun φ F lim C = x A F B lim C

Proof

Step Hyp Ref Expression
1 limciun.1 φ A Fin
2 limciun.2 φ x A B
3 limciun.3 φ F : x A B
4 limciun.4 φ C
5 limccl F lim C
6 limcresi F lim C F B lim C
7 6 rgenw x A F lim C F B lim C
8 ssiin F lim C x A F B lim C x A F lim C F B lim C
9 7 8 mpbir F lim C x A F B lim C
10 5 9 ssini F lim C x A F B lim C
11 10 a1i φ F lim C x A F B lim C
12 elriin y x A F B lim C y x A y F B lim C
13 simprl φ y x A y F B lim C y
14 1 ad2antrr φ y x A y F B lim C u TopOpen fld y u A Fin
15 simplrr φ y x A y F B lim C u TopOpen fld y u x A y F B lim C
16 nfcv _ x F
17 nfcsb1v _ x a / x B
18 16 17 nfres _ x F a / x B
19 nfcv _ x lim
20 nfcv _ x C
21 18 19 20 nfov _ x F a / x B lim C
22 21 nfcri x y F a / x B lim C
23 csbeq1a x = a B = a / x B
24 23 reseq2d x = a F B = F a / x B
25 24 oveq1d x = a F B lim C = F a / x B lim C
26 25 eleq2d x = a y F B lim C y F a / x B lim C
27 22 26 rspc a A x A y F B lim C y F a / x B lim C
28 15 27 mpan9 φ y x A y F B lim C u TopOpen fld y u a A y F a / x B lim C
29 3 ad2antrr φ y x A y F B lim C a A F : x A B
30 ssiun2 a A a / x B a A a / x B
31 nfcv _ a B
32 31 17 23 cbviun x A B = a A a / x B
33 30 32 sseqtrrdi a A a / x B x A B
34 33 adantl φ y x A y F B lim C a A a / x B x A B
35 29 34 fssresd φ y x A y F B lim C a A F a / x B : a / x B
36 simpr φ y x A y F B lim C a A a A
37 2 ad2antrr φ y x A y F B lim C a A x A B
38 nfcv _ x
39 17 38 nfss x a / x B
40 23 sseq1d x = a B a / x B
41 39 40 rspc a A x A B a / x B
42 36 37 41 sylc φ y x A y F B lim C a A a / x B
43 4 ad2antrr φ y x A y F B lim C a A C
44 eqid TopOpen fld = TopOpen fld
45 35 42 43 44 ellimc2 φ y x A y F B lim C a A y F a / x B lim C y u TopOpen fld y u k TopOpen fld C k F a / x B k a / x B C u
46 45 adantlr φ y x A y F B lim C u TopOpen fld y u a A y F a / x B lim C y u TopOpen fld y u k TopOpen fld C k F a / x B k a / x B C u
47 28 46 mpbid φ y x A y F B lim C u TopOpen fld y u a A y u TopOpen fld y u k TopOpen fld C k F a / x B k a / x B C u
48 47 simprd φ y x A y F B lim C u TopOpen fld y u a A u TopOpen fld y u k TopOpen fld C k F a / x B k a / x B C u
49 simplrl φ y x A y F B lim C u TopOpen fld y u a A u TopOpen fld
50 simplrr φ y x A y F B lim C u TopOpen fld y u a A y u
51 rsp u TopOpen fld y u k TopOpen fld C k F a / x B k a / x B C u u TopOpen fld y u k TopOpen fld C k F a / x B k a / x B C u
52 48 49 50 51 syl3c φ y x A y F B lim C u TopOpen fld y u a A k TopOpen fld C k F a / x B k a / x B C u
53 52 ralrimiva φ y x A y F B lim C u TopOpen fld y u a A k TopOpen fld C k F a / x B k a / x B C u
54 nfv a k TopOpen fld C k F B k B C u
55 nfcv _ x TopOpen fld
56 nfv x C k
57 nfcv _ x k
58 nfcv _ x C
59 17 58 nfdif _ x a / x B C
60 57 59 nfin _ x k a / x B C
61 18 60 nfima _ x F a / x B k a / x B C
62 nfcv _ x u
63 61 62 nfss x F a / x B k a / x B C u
64 56 63 nfan x C k F a / x B k a / x B C u
65 55 64 nfrex x k TopOpen fld C k F a / x B k a / x B C u
66 23 difeq1d x = a B C = a / x B C
67 66 ineq2d x = a k B C = k a / x B C
68 24 67 imaeq12d x = a F B k B C = F a / x B k a / x B C
69 68 sseq1d x = a F B k B C u F a / x B k a / x B C u
70 69 anbi2d x = a C k F B k B C u C k F a / x B k a / x B C u
71 70 rexbidv x = a k TopOpen fld C k F B k B C u k TopOpen fld C k F a / x B k a / x B C u
72 54 65 71 cbvralw x A k TopOpen fld C k F B k B C u a A k TopOpen fld C k F a / x B k a / x B C u
73 53 72 sylibr φ y x A y F B lim C u TopOpen fld y u x A k TopOpen fld C k F B k B C u
74 eleq2 k = g x C k C g x
75 ineq1 k = g x k B C = g x B C
76 75 imaeq2d k = g x F B k B C = F B g x B C
77 76 sseq1d k = g x F B k B C u F B g x B C u
78 74 77 anbi12d k = g x C k F B k B C u C g x F B g x B C u
79 78 ac6sfi A Fin x A k TopOpen fld C k F B k B C u g g : A TopOpen fld x A C g x F B g x B C u
80 14 73 79 syl2anc φ y x A y F B lim C u TopOpen fld y u g g : A TopOpen fld x A C g x F B g x B C u
81 44 cnfldtop TopOpen fld Top
82 frn g : A TopOpen fld ran g TopOpen fld
83 82 ad2antrl φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u ran g TopOpen fld
84 14 adantr φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u A Fin
85 ffn g : A TopOpen fld g Fn A
86 85 ad2antrl φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u g Fn A
87 dffn4 g Fn A g : A onto ran g
88 86 87 sylib φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u g : A onto ran g
89 fofi A Fin g : A onto ran g ran g Fin
90 84 88 89 syl2anc φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u ran g Fin
91 unicntop = TopOpen fld
92 91 rintopn TopOpen fld Top ran g TopOpen fld ran g Fin ran g TopOpen fld
93 81 83 90 92 mp3an2i φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u ran g TopOpen fld
94 4 adantr φ y x A y F B lim C C
95 94 ad2antrr φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u C
96 simpl C g x F B g x B C u C g x
97 96 ralimi x A C g x F B g x B C u x A C g x
98 97 ad2antll φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u x A C g x
99 eleq2 z = g x C z C g x
100 99 ralrn g Fn A z ran g C z x A C g x
101 86 100 syl φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u z ran g C z x A C g x
102 98 101 mpbird φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u z ran g C z
103 elrint C ran g C z ran g C z
104 95 102 103 sylanbrc φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u C ran g
105 indifcom ran g x A B C = x A B ran g C
106 iunin1 x A B ran g C = x A B ran g C
107 105 106 eqtr4i ran g x A B C = x A B ran g C
108 107 imaeq2i F ran g x A B C = F x A B ran g C
109 imaiun F x A B ran g C = x A F B ran g C
110 108 109 eqtri F ran g x A B C = x A F B ran g C
111 inss2 ran g ran g
112 fnfvelrn g Fn A x A g x ran g
113 85 112 sylan g : A TopOpen fld x A g x ran g
114 intss1 g x ran g ran g g x
115 113 114 syl g : A TopOpen fld x A ran g g x
116 111 115 sstrid g : A TopOpen fld x A ran g g x
117 116 ssdifd g : A TopOpen fld x A ran g C g x C
118 sslin ran g C g x C B ran g C B g x C
119 imass2 B ran g C B g x C F B ran g C F B g x C
120 117 118 119 3syl g : A TopOpen fld x A F B ran g C F B g x C
121 indifcom g x B C = B g x C
122 121 imaeq2i F B g x B C = F B B g x C
123 inss1 B g x C B
124 resima2 B g x C B F B B g x C = F B g x C
125 123 124 ax-mp F B B g x C = F B g x C
126 122 125 eqtri F B g x B C = F B g x C
127 120 126 sseqtrrdi g : A TopOpen fld x A F B ran g C F B g x B C
128 sstr2 F B ran g C F B g x B C F B g x B C u F B ran g C u
129 127 128 syl g : A TopOpen fld x A F B g x B C u F B ran g C u
130 129 adantld g : A TopOpen fld x A C g x F B g x B C u F B ran g C u
131 130 ralimdva g : A TopOpen fld x A C g x F B g x B C u x A F B ran g C u
132 131 imp g : A TopOpen fld x A C g x F B g x B C u x A F B ran g C u
133 132 adantl φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u x A F B ran g C u
134 iunss x A F B ran g C u x A F B ran g C u
135 133 134 sylibr φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u x A F B ran g C u
136 110 135 eqsstrid φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u F ran g x A B C u
137 eleq2 v = ran g C v C ran g
138 ineq1 v = ran g v x A B C = ran g x A B C
139 138 imaeq2d v = ran g F v x A B C = F ran g x A B C
140 139 sseq1d v = ran g F v x A B C u F ran g x A B C u
141 137 140 anbi12d v = ran g C v F v x A B C u C ran g F ran g x A B C u
142 141 rspcev ran g TopOpen fld C ran g F ran g x A B C u v TopOpen fld C v F v x A B C u
143 93 104 136 142 syl12anc φ y x A y F B lim C u TopOpen fld y u g : A TopOpen fld x A C g x F B g x B C u v TopOpen fld C v F v x A B C u
144 80 143 exlimddv φ y x A y F B lim C u TopOpen fld y u v TopOpen fld C v F v x A B C u
145 144 expr φ y x A y F B lim C u TopOpen fld y u v TopOpen fld C v F v x A B C u
146 145 ralrimiva φ y x A y F B lim C u TopOpen fld y u v TopOpen fld C v F v x A B C u
147 3 adantr φ y x A y F B lim C F : x A B
148 iunss x A B x A B
149 2 148 sylibr φ x A B
150 149 adantr φ y x A y F B lim C x A B
151 147 150 94 44 ellimc2 φ y x A y F B lim C y F lim C y u TopOpen fld y u v TopOpen fld C v F v x A B C u
152 13 146 151 mpbir2and φ y x A y F B lim C y F lim C
153 152 ex φ y x A y F B lim C y F lim C
154 12 153 syl5bi φ y x A F B lim C y F lim C
155 154 ssrdv φ x A F B lim C F lim C
156 11 155 eqssd φ F lim C = x A F B lim C