Metamath Proof Explorer


Theorem limciun

Description: A point is a limit of F on the finite union U_ x e. A B ( x ) iff it is the limit of the restriction of F to each B ( x ) . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses limciun.1 φAFin
limciun.2 φxAB
limciun.3 φF:xAB
limciun.4 φC
Assertion limciun φFlimC=xAFBlimC

Proof

Step Hyp Ref Expression
1 limciun.1 φAFin
2 limciun.2 φxAB
3 limciun.3 φF:xAB
4 limciun.4 φC
5 limccl FlimC
6 limcresi FlimCFBlimC
7 6 rgenw xAFlimCFBlimC
8 ssiin FlimCxAFBlimCxAFlimCFBlimC
9 7 8 mpbir FlimCxAFBlimC
10 5 9 ssini FlimCxAFBlimC
11 10 a1i φFlimCxAFBlimC
12 elriin yxAFBlimCyxAyFBlimC
13 simprl φyxAyFBlimCy
14 1 ad2antrr φyxAyFBlimCuTopOpenfldyuAFin
15 simplrr φyxAyFBlimCuTopOpenfldyuxAyFBlimC
16 nfcv _xF
17 nfcsb1v _xa/xB
18 16 17 nfres _xFa/xB
19 nfcv _xlim
20 nfcv _xC
21 18 19 20 nfov _xFa/xBlimC
22 21 nfcri xyFa/xBlimC
23 csbeq1a x=aB=a/xB
24 23 reseq2d x=aFB=Fa/xB
25 24 oveq1d x=aFBlimC=Fa/xBlimC
26 25 eleq2d x=ayFBlimCyFa/xBlimC
27 22 26 rspc aAxAyFBlimCyFa/xBlimC
28 15 27 mpan9 φyxAyFBlimCuTopOpenfldyuaAyFa/xBlimC
29 3 ad2antrr φyxAyFBlimCaAF:xAB
30 ssiun2 aAa/xBaAa/xB
31 nfcv _aB
32 31 17 23 cbviun xAB=aAa/xB
33 30 32 sseqtrrdi aAa/xBxAB
34 33 adantl φyxAyFBlimCaAa/xBxAB
35 29 34 fssresd φyxAyFBlimCaAFa/xB:a/xB
36 simpr φyxAyFBlimCaAaA
37 2 ad2antrr φyxAyFBlimCaAxAB
38 nfcv _x
39 17 38 nfss xa/xB
40 23 sseq1d x=aBa/xB
41 39 40 rspc aAxABa/xB
42 36 37 41 sylc φyxAyFBlimCaAa/xB
43 4 ad2antrr φyxAyFBlimCaAC
44 eqid TopOpenfld=TopOpenfld
45 35 42 43 44 ellimc2 φyxAyFBlimCaAyFa/xBlimCyuTopOpenfldyukTopOpenfldCkFa/xBka/xBCu
46 45 adantlr φyxAyFBlimCuTopOpenfldyuaAyFa/xBlimCyuTopOpenfldyukTopOpenfldCkFa/xBka/xBCu
47 28 46 mpbid φyxAyFBlimCuTopOpenfldyuaAyuTopOpenfldyukTopOpenfldCkFa/xBka/xBCu
48 47 simprd φyxAyFBlimCuTopOpenfldyuaAuTopOpenfldyukTopOpenfldCkFa/xBka/xBCu
49 simplrl φyxAyFBlimCuTopOpenfldyuaAuTopOpenfld
50 simplrr φyxAyFBlimCuTopOpenfldyuaAyu
51 rsp uTopOpenfldyukTopOpenfldCkFa/xBka/xBCuuTopOpenfldyukTopOpenfldCkFa/xBka/xBCu
52 48 49 50 51 syl3c φyxAyFBlimCuTopOpenfldyuaAkTopOpenfldCkFa/xBka/xBCu
53 52 ralrimiva φyxAyFBlimCuTopOpenfldyuaAkTopOpenfldCkFa/xBka/xBCu
54 nfv akTopOpenfldCkFBkBCu
55 nfcv _xTopOpenfld
56 nfv xCk
57 nfcv _xk
58 nfcv _xC
59 17 58 nfdif _xa/xBC
60 57 59 nfin _xka/xBC
61 18 60 nfima _xFa/xBka/xBC
62 nfcv _xu
63 61 62 nfss xFa/xBka/xBCu
64 56 63 nfan xCkFa/xBka/xBCu
65 55 64 nfrexw xkTopOpenfldCkFa/xBka/xBCu
66 23 difeq1d x=aBC=a/xBC
67 66 ineq2d x=akBC=ka/xBC
68 24 67 imaeq12d x=aFBkBC=Fa/xBka/xBC
69 68 sseq1d x=aFBkBCuFa/xBka/xBCu
70 69 anbi2d x=aCkFBkBCuCkFa/xBka/xBCu
71 70 rexbidv x=akTopOpenfldCkFBkBCukTopOpenfldCkFa/xBka/xBCu
72 54 65 71 cbvralw xAkTopOpenfldCkFBkBCuaAkTopOpenfldCkFa/xBka/xBCu
73 53 72 sylibr φyxAyFBlimCuTopOpenfldyuxAkTopOpenfldCkFBkBCu
74 eleq2 k=gxCkCgx
75 ineq1 k=gxkBC=gxBC
76 75 imaeq2d k=gxFBkBC=FBgxBC
77 76 sseq1d k=gxFBkBCuFBgxBCu
78 74 77 anbi12d k=gxCkFBkBCuCgxFBgxBCu
79 78 ac6sfi AFinxAkTopOpenfldCkFBkBCugg:ATopOpenfldxACgxFBgxBCu
80 14 73 79 syl2anc φyxAyFBlimCuTopOpenfldyugg:ATopOpenfldxACgxFBgxBCu
81 44 cnfldtop TopOpenfldTop
82 frn g:ATopOpenfldrangTopOpenfld
83 82 ad2antrl φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCurangTopOpenfld
84 14 adantr φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuAFin
85 ffn g:ATopOpenfldgFnA
86 85 ad2antrl φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCugFnA
87 dffn4 gFnAg:Aontorang
88 86 87 sylib φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCug:Aontorang
89 fofi AFing:AontorangrangFin
90 84 88 89 syl2anc φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCurangFin
91 unicntop =TopOpenfld
92 91 rintopn TopOpenfldToprangTopOpenfldrangFinrangTopOpenfld
93 81 83 90 92 mp3an2i φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCurangTopOpenfld
94 4 adantr φyxAyFBlimCC
95 94 ad2antrr φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuC
96 simpl CgxFBgxBCuCgx
97 96 ralimi xACgxFBgxBCuxACgx
98 97 ad2antll φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuxACgx
99 eleq2 z=gxCzCgx
100 99 ralrn gFnAzrangCzxACgx
101 86 100 syl φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuzrangCzxACgx
102 98 101 mpbird φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuzrangCz
103 elrint CrangCzrangCz
104 95 102 103 sylanbrc φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuCrang
105 indifcom rangxABC=xABrangC
106 iunin1 xABrangC=xABrangC
107 105 106 eqtr4i rangxABC=xABrangC
108 107 imaeq2i FrangxABC=FxABrangC
109 imaiun FxABrangC=xAFBrangC
110 108 109 eqtri FrangxABC=xAFBrangC
111 inss2 rangrang
112 fnfvelrn gFnAxAgxrang
113 85 112 sylan g:ATopOpenfldxAgxrang
114 intss1 gxrangranggx
115 113 114 syl g:ATopOpenfldxAranggx
116 111 115 sstrid g:ATopOpenfldxAranggx
117 116 ssdifd g:ATopOpenfldxArangCgxC
118 sslin rangCgxCBrangCBgxC
119 imass2 BrangCBgxCFBrangCFBgxC
120 117 118 119 3syl g:ATopOpenfldxAFBrangCFBgxC
121 indifcom gxBC=BgxC
122 121 imaeq2i FBgxBC=FBBgxC
123 inss1 BgxCB
124 resima2 BgxCBFBBgxC=FBgxC
125 123 124 ax-mp FBBgxC=FBgxC
126 122 125 eqtri FBgxBC=FBgxC
127 120 126 sseqtrrdi g:ATopOpenfldxAFBrangCFBgxBC
128 sstr2 FBrangCFBgxBCFBgxBCuFBrangCu
129 127 128 syl g:ATopOpenfldxAFBgxBCuFBrangCu
130 129 adantld g:ATopOpenfldxACgxFBgxBCuFBrangCu
131 130 ralimdva g:ATopOpenfldxACgxFBgxBCuxAFBrangCu
132 131 imp g:ATopOpenfldxACgxFBgxBCuxAFBrangCu
133 132 adantl φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuxAFBrangCu
134 iunss xAFBrangCuxAFBrangCu
135 133 134 sylibr φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuxAFBrangCu
136 110 135 eqsstrid φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuFrangxABCu
137 eleq2 v=rangCvCrang
138 ineq1 v=rangvxABC=rangxABC
139 138 imaeq2d v=rangFvxABC=FrangxABC
140 139 sseq1d v=rangFvxABCuFrangxABCu
141 137 140 anbi12d v=rangCvFvxABCuCrangFrangxABCu
142 141 rspcev rangTopOpenfldCrangFrangxABCuvTopOpenfldCvFvxABCu
143 93 104 136 142 syl12anc φyxAyFBlimCuTopOpenfldyug:ATopOpenfldxACgxFBgxBCuvTopOpenfldCvFvxABCu
144 80 143 exlimddv φyxAyFBlimCuTopOpenfldyuvTopOpenfldCvFvxABCu
145 144 expr φyxAyFBlimCuTopOpenfldyuvTopOpenfldCvFvxABCu
146 145 ralrimiva φyxAyFBlimCuTopOpenfldyuvTopOpenfldCvFvxABCu
147 3 adantr φyxAyFBlimCF:xAB
148 iunss xABxAB
149 2 148 sylibr φxAB
150 149 adantr φyxAyFBlimCxAB
151 147 150 94 44 ellimc2 φyxAyFBlimCyFlimCyuTopOpenfldyuvTopOpenfldCvFvxABCu
152 13 146 151 mpbir2and φyxAyFBlimCyFlimC
153 152 ex φyxAyFBlimCyFlimC
154 12 153 biimtrid φyxAFBlimCyFlimC
155 154 ssrdv φxAFBlimCFlimC
156 11 155 eqssd φFlimC=xAFBlimC