Metamath Proof Explorer


Theorem liminfvalxr

Description: Alternate definition of liminf when F is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvalxr.1 _xF
liminfvalxr.2 φAV
liminfvalxr.3 φF:A*
Assertion liminfvalxr φlim infF=lim supxAFx

Proof

Step Hyp Ref Expression
1 liminfvalxr.1 _xF
2 liminfvalxr.2 φAV
3 liminfvalxr.3 φF:A*
4 nftru k
5 inss2 Fk+∞**
6 infxrcl Fk+∞**supFk+∞**<*
7 5 6 ax-mp supFk+∞**<*
8 7 a1i ksupFk+∞**<*
9 4 8 supminfxrrnmpt supranksupFk+∞**<*<=supranksupFk+∞**<*<
10 9 mptru supranksupFk+∞**<*<=supranksupFk+∞**<*<
11 10 a1i φsupranksupFk+∞**<*<=supranksupFk+∞**<*<
12 tru
13 inss2 yAFyk+∞**
14 13 a1i yAFyk+∞**
15 14 supminfxr2 supyAFyk+∞**<=supz*|zyAFyk+∞**<
16 12 15 ax-mp supyAFyk+∞**<=supz*|zyAFyk+∞**<
17 16 a1i φsupyAFyk+∞**<=supz*|zyAFyk+∞**<
18 elinel1 zyAFyk+∞*zyAFyk+∞
19 nfmpt1 _yyAFy
20 xnegex FyV
21 eqid yAFy=yAFy
22 20 21 fnmpti yAFyFnA
23 22 a1i φyAFyFnA
24 23 adantr φzyAFyk+∞yAFyFnA
25 simpr φzyAFyk+∞zyAFyk+∞
26 19 24 25 fvelimad φzyAFyk+∞yAk+∞yAFyy=z
27 26 3adant2 φz*zyAFyk+∞yAk+∞yAFyy=z
28 18 27 syl3an3 φz*zyAFyk+∞*yAk+∞yAFyy=z
29 elinel2 zyAFyk+∞*z*
30 elinel1 yAk+∞yA
31 20 a1i yAk+∞FyV
32 21 fvmpt2 yAFyVyAFyy=Fy
33 30 31 32 syl2anc yAk+∞yAFyy=Fy
34 33 eqcomd yAk+∞Fy=yAFyy
35 34 adantr yAk+∞yAFyy=zFy=yAFyy
36 simpr yAk+∞yAFyy=zyAFyy=z
37 35 36 eqtrd yAk+∞yAFyy=zFy=z
38 37 adantll φz*yAk+∞yAFyy=zFy=z
39 eqcom Fy=zz=Fy
40 39 biimpi Fy=zz=Fy
41 40 adantl φz*yAk+∞Fy=zz=Fy
42 simplr φz*yAk+∞z*
43 3 adantr φyAk+∞F:A*
44 30 adantl φyAk+∞yA
45 43 44 ffvelcdmd φyAk+∞Fy*
46 45 adantlr φz*yAk+∞Fy*
47 xneg11 z*Fy*z=Fyz=Fy
48 42 46 47 syl2anc φz*yAk+∞z=Fyz=Fy
49 48 adantr φz*yAk+∞Fy=zz=Fyz=Fy
50 41 49 mpbid φz*yAk+∞Fy=zz=Fy
51 3 ffund φFunF
52 51 30 anim12i φyAk+∞FunFyA
53 52 simpld φyAk+∞FunF
54 3 fdmd φdomF=A
55 54 eqcomd φA=domF
56 55 adantr φyAk+∞A=domF
57 44 56 eleqtrd φyAk+∞ydomF
58 53 57 jca φyAk+∞FunFydomF
59 elinel2 yAk+∞yk+∞
60 59 adantl φyAk+∞yk+∞
61 funfvima FunFydomFyk+∞FyFk+∞
62 58 60 61 sylc φyAk+∞FyFk+∞
63 62 ad4ant13 φz*yAk+∞Fy=zFyFk+∞
64 50 63 eqeltrd φz*yAk+∞Fy=zzFk+∞
65 38 64 syldan φz*yAk+∞yAFyy=zzFk+∞
66 65 rexlimdva2 φz*yAk+∞yAFyy=zzFk+∞
67 66 3adant3 φz*z*yAk+∞yAFyy=zzFk+∞
68 29 67 syl3an3 φz*zyAFyk+∞*yAk+∞yAFyy=zzFk+∞
69 28 68 mpd φz*zyAFyk+∞*zFk+∞
70 69 rabssdv φz*|zyAFyk+∞*Fk+∞
71 ssrab2 z*|zyAFyk+∞**
72 71 a1i φz*|zyAFyk+∞**
73 70 72 ssind φz*|zyAFyk+∞*Fk+∞*
74 5 a1i φFk+∞**
75 3 ffnd φFFnA
76 75 adantr φzFk+∞*FFnA
77 elinel1 zFk+∞*zFk+∞
78 77 adantl φzFk+∞*zFk+∞
79 fvelima2 FFnAzFk+∞yAk+∞Fy=z
80 76 78 79 syl2anc φzFk+∞*yAk+∞Fy=z
81 elinel2 zFk+∞*z*
82 eqcom Fy=zz=Fy
83 82 biimpi Fy=zz=Fy
84 83 adantl z*Fy=zz=Fy
85 84 xnegeqd z*Fy=zz=Fy
86 simpl z*Fy=zz*
87 84 86 eqeltrrd z*Fy=zFy*
88 86 87 47 syl2anc z*Fy=zz=Fyz=Fy
89 85 88 mpbid z*Fy=zz=Fy
90 89 xnegeqd z*Fy=zz=Fy
91 90 ex z*Fy=zz=Fy
92 91 reximdv z*yAk+∞Fy=zyAk+∞z=Fy
93 81 92 syl zFk+∞*yAk+∞Fy=zyAk+∞z=Fy
94 93 adantl φzFk+∞*yAk+∞Fy=zyAk+∞z=Fy
95 80 94 mpd φzFk+∞*yAk+∞z=Fy
96 xnegex zV
97 elmptima zVzyAFyk+∞yAk+∞z=Fy
98 96 97 ax-mp zyAFyk+∞yAk+∞z=Fy
99 95 98 sylibr φzFk+∞*zyAFyk+∞
100 74 sselda φzFk+∞*z*
101 100 xnegcld φzFk+∞*z*
102 99 101 elind φzFk+∞*zyAFyk+∞*
103 74 102 ssrabdv φFk+∞*z*|zyAFyk+∞*
104 73 103 eqssd φz*|zyAFyk+∞*=Fk+∞*
105 104 infeq1d φsupz*|zyAFyk+∞**<=supFk+∞**<
106 105 xnegeqd φsupz*|zyAFyk+∞**<=supFk+∞**<
107 17 106 eqtr2d φsupFk+∞**<=supyAFyk+∞**<
108 107 mpteq2dv φksupFk+∞**<=ksupyAFyk+∞**<
109 108 rneqd φranksupFk+∞**<=ranksupyAFyk+∞**<
110 109 infeq1d φsupranksupFk+∞**<*<=supranksupyAFyk+∞**<*<
111 110 xnegeqd φsupranksupFk+∞**<*<=supranksupyAFyk+∞**<*<
112 11 111 eqtrd φsupranksupFk+∞**<*<=supranksupyAFyk+∞**<*<
113 3 2 fexd φFV
114 eqid ksupFk+∞**<=ksupFk+∞**<
115 114 liminfval FVlim infF=supranksupFk+∞**<*<
116 113 115 syl φlim infF=supranksupFk+∞**<*<
117 2 mptexd φyAFyV
118 eqid ksupyAFyk+∞**<=ksupyAFyk+∞**<
119 118 limsupval yAFyVlim supyAFy=supranksupyAFyk+∞**<*<
120 117 119 syl φlim supyAFy=supranksupyAFyk+∞**<*<
121 120 xnegeqd φlim supyAFy=supranksupyAFyk+∞**<*<
122 112 116 121 3eqtr4d φlim infF=lim supyAFy
123 nfcv _xy
124 1 123 nffv _xFy
125 124 nfxneg _xFy
126 nfcv _yFx
127 fveq2 y=xFy=Fx
128 127 xnegeqd y=xFy=Fx
129 125 126 128 cbvmpt yAFy=xAFx
130 129 fveq2i lim supyAFy=lim supxAFx
131 130 xnegeqi lim supyAFy=lim supxAFx
132 131 a1i φlim supyAFy=lim supxAFx
133 122 132 eqtrd φlim infF=lim supxAFx