Metamath Proof Explorer


Theorem lincresunit3

Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses lincresunit.b B=BaseM
lincresunit.r R=ScalarM
lincresunit.e E=BaseR
lincresunit.u U=UnitR
lincresunit.0 0˙=0R
lincresunit.z Z=0M
lincresunit.n N=invgR
lincresunit.i I=invrR
lincresunit.t ·˙=R
lincresunit.g G=sSXINFX·˙Fs
Assertion lincresunit3 S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZGlinCMSX=X

Proof

Step Hyp Ref Expression
1 lincresunit.b B=BaseM
2 lincresunit.r R=ScalarM
3 lincresunit.e E=BaseR
4 lincresunit.u U=UnitR
5 lincresunit.0 0˙=0R
6 lincresunit.z Z=0M
7 lincresunit.n N=invgR
8 lincresunit.i I=invrR
9 lincresunit.t ·˙=R
10 lincresunit.g G=sSXINFX·˙Fs
11 simp2 S𝒫BMLModXSMLMod
12 11 3ad2ant1 S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZMLMod
13 simp1 S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZS𝒫BMLModXS
14 3simpa FESFXUfinSupp0˙FFESFXU
15 14 3ad2ant2 S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZFESFXU
16 13 15 jca S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZS𝒫BMLModXSFESFXU
17 eldifi sSXsS
18 1 2 3 4 5 6 7 8 9 10 lincresunitlem2 S𝒫BMLModXSFESFXUsSINFX·˙FsE
19 16 17 18 syl2an S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZsSXINFX·˙FsE
20 2 fveq2i BaseR=BaseScalarM
21 3 20 eqtri E=BaseScalarM
22 19 21 eleqtrdi S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZsSXINFX·˙FsBaseScalarM
23 22 10 fmptd S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZG:SXBaseScalarM
24 fvex BaseScalarMV
25 difexg S𝒫BSXV
26 25 3ad2ant1 S𝒫BMLModXSSXV
27 26 3ad2ant1 S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZSXV
28 elmapg BaseScalarMVSXVGBaseScalarMSXG:SXBaseScalarM
29 24 27 28 sylancr S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZGBaseScalarMSXG:SXBaseScalarM
30 23 29 mpbird S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZGBaseScalarMSX
31 difexg S𝒫BaseMSXV
32 31 adantl XSS𝒫BaseMSXV
33 ssdifss SBaseMSXBaseM
34 33 a1i XSSBaseMSXBaseM
35 elpwi S𝒫BaseMSBaseM
36 34 35 impel XSS𝒫BaseMSXBaseM
37 32 36 elpwd XSS𝒫BaseMSX𝒫BaseM
38 37 expcom S𝒫BaseMXSSX𝒫BaseM
39 1 pweqi 𝒫B=𝒫BaseM
40 38 39 eleq2s S𝒫BXSSX𝒫BaseM
41 40 imp S𝒫BXSSX𝒫BaseM
42 41 3adant2 S𝒫BMLModXSSX𝒫BaseM
43 42 3ad2ant1 S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZSX𝒫BaseM
44 lincval MLModGBaseScalarMSXSX𝒫BaseMGlinCMSX=MsSXGsMs
45 12 30 43 44 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZGlinCMSX=MsSXGsMs
46 simp1 S𝒫BMLModXSS𝒫B
47 simp3 S𝒫BMLModXSXS
48 11 46 47 3jca S𝒫BMLModXSMLModS𝒫BXS
49 48 adantr S𝒫BMLModXSFESFXUfinSupp0˙FMLModS𝒫BXS
50 3simpb FESFXUfinSupp0˙FFESfinSupp0˙F
51 50 adantl S𝒫BMLModXSFESFXUfinSupp0˙FFESfinSupp0˙F
52 eqidd S𝒫BMLModXSFESFXUfinSupp0˙FFSX=FSX
53 eqid M=M
54 eqid +M=+M
55 1 2 3 53 54 5 lincdifsn MLModS𝒫BXSFESfinSupp0˙FFSX=FSXFlinCMS=FSXlinCMSX+MFXMX
56 49 51 52 55 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=FSXlinCMSX+MFXMX
57 56 eqeq1d S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZFSXlinCMSX+MFXMX=Z
58 fveq2 s=zGs=Gz
59 id s=zs=z
60 58 59 oveq12d s=zGsMs=GzMz
61 60 cbvmptv sSXGsMs=zSXGzMz
62 61 a1i S𝒫BMLModXSFESFXUfinSupp0˙FsSXGsMs=zSXGzMz
63 62 oveq2d S𝒫BMLModXSFESFXUfinSupp0˙FMsSXGsMs=MzSXGzMz
64 63 oveq2d S𝒫BMLModXSFESFXUfinSupp0˙FNFXMMsSXGsMs=NFXMMzSXGzMz
65 1 2 3 4 5 6 7 8 9 10 lincresunit3lem2 S𝒫BMLModXSFESFXUfinSupp0˙FNFXMMzSXGzMz=FSXlinCMSX
66 64 65 eqtr2d S𝒫BMLModXSFESFXUfinSupp0˙FFSXlinCMSX=NFXMMsSXGsMs
67 66 oveq1d S𝒫BMLModXSFESFXUfinSupp0˙FFSXlinCMSX+MFXMX=NFXMMsSXGsMs+MFXMX
68 67 eqeq1d S𝒫BMLModXSFESFXUfinSupp0˙FFSXlinCMSX+MFXMX=ZNFXMMsSXGsMs+MFXMX=Z
69 lmodgrp MLModMGrp
70 69 3ad2ant2 S𝒫BMLModXSMGrp
71 70 adantr S𝒫BMLModXSFESFXUfinSupp0˙FMGrp
72 11 adantr S𝒫BMLModXSFESFXUfinSupp0˙FMLMod
73 elmapi FESF:SE
74 73 3ad2ant1 FESFXUfinSupp0˙FF:SE
75 ffvelcdm F:SEXSFXE
76 74 47 75 syl2anr S𝒫BMLModXSFESFXUfinSupp0˙FFXE
77 elpwi S𝒫BSB
78 77 sselda S𝒫BXSXB
79 78 3adant2 S𝒫BMLModXSXB
80 79 adantr S𝒫BMLModXSFESFXUfinSupp0˙FXB
81 1 2 53 3 lmodvscl MLModFXEXBFXMXB
82 72 76 80 81 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FFXMXB
83 2 lmodfgrp MLModRGrp
84 83 3ad2ant2 S𝒫BMLModXSRGrp
85 3 7 grpinvcl RGrpFXENFXE
86 84 76 85 syl2an2r S𝒫BMLModXSFESFXUfinSupp0˙FNFXE
87 lmodcmn MLModMCMnd
88 87 3ad2ant2 S𝒫BMLModXSMCMnd
89 88 adantr S𝒫BMLModXSFESFXUfinSupp0˙FMCMnd
90 26 adantr S𝒫BMLModXSFESFXUfinSupp0˙FSXV
91 simpll2 S𝒫BMLModXSFESFXUfinSupp0˙FsSXMLMod
92 1 2 3 4 5 6 7 8 9 10 lincresunit1 S𝒫BMLModXSFESFXUGESX
93 92 3adantr3 S𝒫BMLModXSFESFXUfinSupp0˙FGESX
94 elmapi GESXG:SXE
95 93 94 syl S𝒫BMLModXSFESFXUfinSupp0˙FG:SXE
96 95 ffvelcdmda S𝒫BMLModXSFESFXUfinSupp0˙FsSXGsE
97 ssel2 SBsSsB
98 97 expcom sSSBsB
99 17 77 98 syl2imc S𝒫BsSXsB
100 99 3ad2ant1 S𝒫BMLModXSsSXsB
101 100 adantr S𝒫BMLModXSFESFXUfinSupp0˙FsSXsB
102 101 imp S𝒫BMLModXSFESFXUfinSupp0˙FsSXsB
103 1 2 53 3 lmodvscl MLModGsEsBGsMsB
104 91 96 102 103 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FsSXGsMsB
105 104 fmpttd S𝒫BMLModXSFESFXUfinSupp0˙FsSXGsMs:SXB
106 25 adantr S𝒫BXSSXV
107 ssdifss SBSXB
108 77 107 syl S𝒫BSXB
109 108 adantr S𝒫BXSSXB
110 109 1 sseqtrdi S𝒫BXSSXBaseM
111 106 110 elpwd S𝒫BXSSX𝒫BaseM
112 111 3adant2 S𝒫BMLModXSSX𝒫BaseM
113 11 112 jca S𝒫BMLModXSMLModSX𝒫BaseM
114 113 adantr S𝒫BMLModXSFESFXUfinSupp0˙FMLModSX𝒫BaseM
115 1 2 3 4 5 6 7 8 9 10 lincresunit2 S𝒫BMLModXSFESFXUfinSupp0˙FfinSupp0˙G
116 115 5 breqtrdi S𝒫BMLModXSFESFXUfinSupp0˙FfinSupp0RG
117 2 3 scmfsupp MLModSX𝒫BaseMGESXfinSupp0RGfinSupp0MsSXGsMs
118 114 93 116 117 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FfinSupp0MsSXGsMs
119 118 6 breqtrrdi S𝒫BMLModXSFESFXUfinSupp0˙FfinSuppZsSXGsMs
120 1 6 89 90 105 119 gsumcl S𝒫BMLModXSFESFXUfinSupp0˙FMsSXGsMsB
121 1 2 53 3 lmodvscl MLModNFXEMsSXGsMsBNFXMMsSXGsMsB
122 72 86 120 121 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FNFXMMsSXGsMsB
123 eqid invgM=invgM
124 1 54 6 123 grpinvid2 MGrpFXMXBNFXMMsSXGsMsBinvgMFXMX=NFXMMsSXGsMsNFXMMsSXGsMs+MFXMX=Z
125 71 82 122 124 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FinvgMFXMX=NFXMMsSXGsMsNFXMMsSXGsMs+MFXMX=Z
126 1 2 53 123 3 7 72 80 76 lmodvsneg S𝒫BMLModXSFESFXUfinSupp0˙FinvgMFXMX=NFXMX
127 126 eqeq1d S𝒫BMLModXSFESFXUfinSupp0˙FinvgMFXMX=NFXMMsSXGsMsNFXMX=NFXMMsSXGsMs
128 simpr2 S𝒫BMLModXSFESFXUfinSupp0˙FFXU
129 1 2 3 4 7 53 lincresunit3lem3 MLModXBMsSXGsMsBFXUNFXMX=NFXMMsSXGsMsX=MsSXGsMs
130 eqcom X=MsSXGsMsMsSXGsMs=X
131 129 130 bitrdi MLModXBMsSXGsMsBFXUNFXMX=NFXMMsSXGsMsMsSXGsMs=X
132 72 80 120 128 131 syl31anc S𝒫BMLModXSFESFXUfinSupp0˙FNFXMX=NFXMMsSXGsMsMsSXGsMs=X
133 132 biimpd S𝒫BMLModXSFESFXUfinSupp0˙FNFXMX=NFXMMsSXGsMsMsSXGsMs=X
134 127 133 sylbid S𝒫BMLModXSFESFXUfinSupp0˙FinvgMFXMX=NFXMMsSXGsMsMsSXGsMs=X
135 125 134 sylbird S𝒫BMLModXSFESFXUfinSupp0˙FNFXMMsSXGsMs+MFXMX=ZMsSXGsMs=X
136 68 135 sylbid S𝒫BMLModXSFESFXUfinSupp0˙FFSXlinCMSX+MFXMX=ZMsSXGsMs=X
137 57 136 sylbid S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZMsSXGsMs=X
138 137 3impia S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZMsSXGsMs=X
139 45 138 eqtrd S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZGlinCMSX=X