Metamath Proof Explorer


Theorem lindsunlem

Description: Lemma for lindsun . (Contributed by Thierry Arnoux, 9-May-2023)

Ref Expression
Hypotheses lindsun.n N=LSpanW
lindsun.0 0˙=0W
lindsun.w φWLVec
lindsun.u φULIndSW
lindsun.v φVLIndSW
lindsun.2 φNUNV=0˙
lindsunlem.o O=0ScalarW
lindsunlem.f F=BaseScalarW
lindsunlem.c φCU
lindsunlem.k φKFO
lindsunlem.1 φKWCNUVC
Assertion lindsunlem φ

Proof

Step Hyp Ref Expression
1 lindsun.n N=LSpanW
2 lindsun.0 0˙=0W
3 lindsun.w φWLVec
4 lindsun.u φULIndSW
5 lindsun.v φVLIndSW
6 lindsun.2 φNUNV=0˙
7 lindsunlem.o O=0ScalarW
8 lindsunlem.f F=BaseScalarW
9 lindsunlem.c φCU
10 lindsunlem.k φKFO
11 lindsunlem.1 φKWCNUVC
12 simpr φxNUCyNVKWC=x+WyKWC=x+Wy
13 lveclmod WLVecWLMod
14 3 13 syl φWLMod
15 lmodgrp WLModWGrp
16 14 15 syl φWGrp
17 16 ad3antrrr φxNUCyNVKWC=x+WyWGrp
18 lmodabl WLModWAbel
19 14 18 syl φWAbel
20 19 ad3antrrr φxNUCyNVKWC=x+WyWAbel
21 eqid BaseW=BaseW
22 21 linds1 ULIndSWUBaseW
23 4 22 syl φUBaseW
24 21 1 lspssv WLModUBaseWNUBaseW
25 14 23 24 syl2anc φNUBaseW
26 25 ad3antrrr φxNUCyNVKWC=x+WyNUBaseW
27 difssd φUCU
28 21 1 lspss WLModUBaseWUCUNUCNU
29 14 23 27 28 syl3anc φNUCNU
30 29 ad3antrrr φxNUCyNVKWC=x+WyNUCNU
31 simpllr φxNUCyNVKWC=x+WyxNUC
32 30 31 sseldd φxNUCyNVKWC=x+WyxNU
33 26 32 sseldd φxNUCyNVKWC=x+WyxBaseW
34 21 linds1 VLIndSWVBaseW
35 5 34 syl φVBaseW
36 21 1 lspssv WLModVBaseWNVBaseW
37 14 35 36 syl2anc φNVBaseW
38 37 ad3antrrr φxNUCyNVKWC=x+WyNVBaseW
39 simplr φxNUCyNVKWC=x+WyyNV
40 38 39 sseldd φxNUCyNVKWC=x+WyyBaseW
41 eqid +W=+W
42 21 41 ablcom WAbelxBaseWyBaseWx+Wy=y+Wx
43 20 33 40 42 syl3anc φxNUCyNVKWC=x+Wyx+Wy=y+Wx
44 12 43 eqtr2d φxNUCyNVKWC=x+Wyy+Wx=KWC
45 10 eldifad φKF
46 23 9 sseldd φCBaseW
47 eqid ScalarW=ScalarW
48 eqid W=W
49 21 47 48 8 lmodvscl WLModKFCBaseWKWCBaseW
50 14 45 46 49 syl3anc φKWCBaseW
51 50 ad3antrrr φxNUCyNVKWC=x+WyKWCBaseW
52 eqid -W=-W
53 21 41 52 grpsubadd WGrpKWCBaseWxBaseWyBaseWKWC-Wx=yy+Wx=KWC
54 53 biimpar WGrpKWCBaseWxBaseWyBaseWy+Wx=KWCKWC-Wx=y
55 54 an32s WGrpy+Wx=KWCKWCBaseWxBaseWyBaseWKWC-Wx=y
56 17 44 51 33 40 55 syl23anc φxNUCyNVKWC=x+WyKWC-Wx=y
57 14 ad3antrrr φxNUCyNVKWC=x+WyWLMod
58 eqid LSubSpW=LSubSpW
59 21 58 1 lspcl WLModUBaseWNULSubSpW
60 14 23 59 syl2anc φNULSubSpW
61 60 ad3antrrr φxNUCyNVKWC=x+WyNULSubSpW
62 45 ad3antrrr φxNUCyNVKWC=x+WyKF
63 21 1 lspssid WLModUBaseWUNU
64 14 23 63 syl2anc φUNU
65 64 9 sseldd φCNU
66 65 ad3antrrr φxNUCyNVKWC=x+WyCNU
67 47 48 8 58 lssvscl WLModNULSubSpWKFCNUKWCNU
68 57 61 62 66 67 syl22anc φxNUCyNVKWC=x+WyKWCNU
69 52 58 lssvsubcl WLModNULSubSpWKWCNUxNUKWC-WxNU
70 57 61 68 32 69 syl22anc φxNUCyNVKWC=x+WyKWC-WxNU
71 56 70 eqeltrrd φxNUCyNVKWC=x+WyyNU
72 71 39 elind φxNUCyNVKWC=x+WyyNUNV
73 6 ad3antrrr φxNUCyNVKWC=x+WyNUNV=0˙
74 72 73 eleqtrd φxNUCyNVKWC=x+Wyy0˙
75 elsni y0˙y=0˙
76 74 75 syl φxNUCyNVKWC=x+Wyy=0˙
77 76 oveq2d φxNUCyNVKWC=x+Wyx+Wy=x+W0˙
78 21 41 2 grprid WGrpxBaseWx+W0˙=x
79 17 33 78 syl2anc φxNUCyNVKWC=x+Wyx+W0˙=x
80 12 77 79 3eqtrd φxNUCyNVKWC=x+WyKWC=x
81 80 31 eqeltrd φxNUCyNVKWC=x+WyKWCNUC
82 9 ad3antrrr φxNUCyNVKWC=x+WyCU
83 10 ad3antrrr φxNUCyNVKWC=x+WyKFO
84 3 ad3antrrr φxNUCyNVKWC=x+WyWLVec
85 4 ad3antrrr φxNUCyNVKWC=x+WyULIndSW
86 21 48 1 47 8 7 islinds2 WLVecULIndSWUBaseWcUkFO¬kWcNUc
87 86 simplbda WLVecULIndSWcUkFO¬kWcNUc
88 84 85 87 syl2anc φxNUCyNVKWC=x+WycUkFO¬kWcNUc
89 oveq2 c=CkWc=kWC
90 sneq c=Cc=C
91 90 difeq2d c=CUc=UC
92 91 fveq2d c=CNUc=NUC
93 89 92 eleq12d c=CkWcNUckWCNUC
94 93 notbid c=C¬kWcNUc¬kWCNUC
95 oveq1 k=KkWC=KWC
96 95 eleq1d k=KkWCNUCKWCNUC
97 96 notbid k=K¬kWCNUC¬KWCNUC
98 94 97 rspc2va CUKFOcUkFO¬kWcNUc¬KWCNUC
99 82 83 88 98 syl21anc φxNUCyNVKWC=x+Wy¬KWCNUC
100 81 99 pm2.21fal φxNUCyNVKWC=x+Wy
101 23 ssdifssd φUCBaseW
102 21 58 1 lspcl WLModUCBaseWNUCLSubSpW
103 14 101 102 syl2anc φNUCLSubSpW
104 58 lsssubg WLModNUCLSubSpWNUCSubGrpW
105 14 103 104 syl2anc φNUCSubGrpW
106 21 58 1 lspcl WLModVBaseWNVLSubSpW
107 14 35 106 syl2anc φNVLSubSpW
108 58 lsssubg WLModNVLSubSpWNVSubGrpW
109 14 107 108 syl2anc φNVSubGrpW
110 eqid LSSumW=LSSumW
111 21 1 110 lsmsp2 WLModUCBaseWVBaseWNUCLSSumWNV=NUCV
112 14 101 35 111 syl3anc φNUCLSSumWNV=NUCV
113 65 adantr φCVCNU
114 21 1 lspssid WLModVBaseWVNV
115 14 35 114 syl2anc φVNV
116 115 sselda φCVCNV
117 113 116 elind φCVCNUNV
118 6 adantr φCVNUNV=0˙
119 117 118 eleqtrd φCVC0˙
120 elsni C0˙C=0˙
121 119 120 syl φCVC=0˙
122 2 0nellinds WLVecULIndSW¬0˙U
123 3 4 122 syl2anc φ¬0˙U
124 nelne2 CU¬0˙UC0˙
125 9 123 124 syl2anc φC0˙
126 125 adantr φCVC0˙
127 126 neneqd φCV¬C=0˙
128 121 127 pm2.65da φ¬CV
129 disjsn VC=¬CV
130 128 129 sylibr φVC=
131 undif4 VC=VUC=VUC
132 130 131 syl φVUC=VUC
133 uncom UCV=VUC
134 uncom UV=VU
135 134 difeq1i UVC=VUC
136 132 133 135 3eqtr4g φUCV=UVC
137 136 fveq2d φNUCV=NUVC
138 112 137 eqtrd φNUCLSSumWNV=NUVC
139 11 138 eleqtrrd φKWCNUCLSSumWNV
140 41 110 lsmelval NUCSubGrpWNVSubGrpWKWCNUCLSSumWNVxNUCyNVKWC=x+Wy
141 140 biimpa NUCSubGrpWNVSubGrpWKWCNUCLSSumWNVxNUCyNVKWC=x+Wy
142 105 109 139 141 syl21anc φxNUCyNVKWC=x+Wy
143 100 142 r19.29vva φ