Metamath Proof Explorer


Theorem lmxrge0

Description: Express "sequence F converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017)

Ref Expression
Hypotheses lmxrge0.j J=TopOpen𝑠*𝑠0+∞
lmxrge0.6 φF:0+∞
lmxrge0.7 φkFk=A
Assertion lmxrge0 φFtJ+∞xjkjx<A

Proof

Step Hyp Ref Expression
1 lmxrge0.j J=TopOpen𝑠*𝑠0+∞
2 lmxrge0.6 φF:0+∞
3 lmxrge0.7 φkFk=A
4 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
5 xrstopn ordTop=TopOpen𝑠*
6 4 5 resstopn ordTop𝑡0+∞=TopOpen𝑠*𝑠0+∞
7 1 6 eqtr4i J=ordTop𝑡0+∞
8 letopon ordTopTopOn*
9 iccssxr 0+∞*
10 resttopon ordTopTopOn*0+∞*ordTop𝑡0+∞TopOn0+∞
11 8 9 10 mp2an ordTop𝑡0+∞TopOn0+∞
12 7 11 eqeltri JTopOn0+∞
13 12 a1i φJTopOn0+∞
14 nnuz =1
15 1zzd φ1
16 13 14 15 2 3 lmbrf φFtJ+∞+∞0+∞aJ+∞alklAa
17 0xr 0*
18 pnfxr +∞*
19 0lepnf 0+∞
20 ubicc2 0*+∞*0+∞+∞0+∞
21 17 18 19 20 mp3an +∞0+∞
22 21 biantrur aJ+∞alklAa+∞0+∞aJ+∞alklAa
23 16 22 bitr4di φFtJ+∞aJ+∞alklAa
24 rexr xx*
25 18 a1i x+∞*
26 ltpnf xx<+∞
27 ubioc1 x*+∞*x<+∞+∞x+∞
28 24 25 26 27 syl3anc x+∞x+∞
29 0ltpnf 0<+∞
30 ubioc1 0*+∞*0<+∞+∞0+∞
31 17 18 29 30 mp3an +∞0+∞
32 28 31 jctir x+∞x+∞+∞0+∞
33 elin +∞x+∞0+∞+∞x+∞+∞0+∞
34 32 33 sylibr x+∞x+∞0+∞
35 34 ad2antlr φxaJ+∞alklAa+∞x+∞0+∞
36 letop ordTopTop
37 ovex 0+∞V
38 iocpnfordt x+∞ordTop
39 iocpnfordt 0+∞ordTop
40 inopn ordTopTopx+∞ordTop0+∞ordTopx+∞0+∞ordTop
41 36 38 39 40 mp3an x+∞0+∞ordTop
42 elrestr ordTopTop0+∞Vx+∞0+∞ordTopx+∞0+∞0+∞ordTop𝑡0+∞
43 36 37 41 42 mp3an x+∞0+∞0+∞ordTop𝑡0+∞
44 inss2 x+∞0+∞0+∞
45 iocssicc 0+∞0+∞
46 44 45 sstri x+∞0+∞0+∞
47 sseqin2 x+∞0+∞0+∞0+∞x+∞0+∞=x+∞0+∞
48 46 47 mpbi 0+∞x+∞0+∞=x+∞0+∞
49 incom 0+∞x+∞0+∞=x+∞0+∞0+∞
50 48 49 eqtr3i x+∞0+∞=x+∞0+∞0+∞
51 43 50 7 3eltr4i x+∞0+∞J
52 51 a1i φxx+∞0+∞J
53 eleq2 a=x+∞0+∞+∞a+∞x+∞0+∞
54 53 adantl φxa=x+∞0+∞+∞a+∞x+∞0+∞
55 54 biimprd φxa=x+∞0+∞+∞x+∞0+∞+∞a
56 simp-5r φxa=x+∞0+∞lklAax
57 56 rexrd φxa=x+∞0+∞lklAax*
58 simpr φxa=x+∞0+∞lklAaAa
59 simp-4r φxa=x+∞0+∞lklAaa=x+∞0+∞
60 58 59 eleqtrd φxa=x+∞0+∞lklAaAx+∞0+∞
61 elin Ax+∞0+∞Ax+∞A0+∞
62 61 simplbi Ax+∞0+∞Ax+∞
63 60 62 syl φxa=x+∞0+∞lklAaAx+∞
64 elioc1 x*+∞*Ax+∞A*x<AA+∞
65 18 64 mpan2 x*Ax+∞A*x<AA+∞
66 65 biimpa x*Ax+∞A*x<AA+∞
67 66 simp2d x*Ax+∞x<A
68 57 63 67 syl2anc φxa=x+∞0+∞lklAax<A
69 68 ex φxa=x+∞0+∞lklAax<A
70 69 ralimdva φxa=x+∞0+∞lklAaklx<A
71 70 reximdva φxa=x+∞0+∞lklAalklx<A
72 fveq2 j=lj=l
73 72 raleqdv j=lkjx<Aklx<A
74 73 cbvrexvw jkjx<Alklx<A
75 71 74 syl6ibr φxa=x+∞0+∞lklAajkjx<A
76 55 75 imim12d φxa=x+∞0+∞+∞alklAa+∞x+∞0+∞jkjx<A
77 52 76 rspcimdv φxaJ+∞alklAa+∞x+∞0+∞jkjx<A
78 77 imp φxaJ+∞alklAa+∞x+∞0+∞jkjx<A
79 35 78 mpd φxaJ+∞alklAajkjx<A
80 79 ex φxaJ+∞alklAajkjx<A
81 80 ralrimdva φaJ+∞alklAaxjkjx<A
82 simplll φaJxjkjx<A+∞aφ
83 simpllr φaJxjkjx<A+∞aaJ
84 simpr φaJxjkjx<A+∞a+∞a
85 1 pnfneige0 aJ+∞axx+∞a
86 83 84 85 syl2anc φaJxjkjx<A+∞axx+∞a
87 simplr φaJxjkjx<A+∞axjkjx<A
88 r19.29r xx+∞axjkjx<Axx+∞ajkjx<A
89 simp-4l φxx+∞alklφ
90 uznnssnn ll
91 90 ad2antlr φxx+∞alkll
92 simpr φxx+∞alklkl
93 91 92 sseldd φxx+∞alklk
94 89 93 jca φxx+∞alklφk
95 simp-4r φxx+∞alklx
96 simpllr φxx+∞alklx+∞a
97 simplr φkxx+∞ax<Ax+∞a
98 simplr φkxx<Ax
99 98 rexrd φkxx<Ax*
100 2 ffvelcdmda φkFk0+∞
101 3 100 eqeltrrd φkA0+∞
102 9 101 sselid φkA*
103 102 ad2antrr φkxx<AA*
104 simpr φkxx<Ax<A
105 pnfge A*A+∞
106 103 105 syl φkxx<AA+∞
107 65 biimpar x*A*x<AA+∞Ax+∞
108 99 103 104 106 107 syl13anc φkxx<AAx+∞
109 108 adantlr φkxx+∞ax<AAx+∞
110 97 109 sseldd φkxx+∞ax<AAa
111 110 ex φkxx+∞ax<AAa
112 94 95 96 111 syl21anc φxx+∞alklx<AAa
113 112 ralimdva φxx+∞alklx<AklAa
114 113 reximdva φxx+∞alklx<AlklAa
115 74 114 biimtrid φxx+∞ajkjx<AlklAa
116 115 expimpd φxx+∞ajkjx<AlklAa
117 116 rexlimdva φxx+∞ajkjx<AlklAa
118 88 117 syl5 φxx+∞axjkjx<AlklAa
119 118 imp φxx+∞axjkjx<AlklAa
120 82 86 87 119 syl12anc φaJxjkjx<A+∞alklAa
121 120 exp31 φaJxjkjx<A+∞alklAa
122 121 ralrimdva φxjkjx<AaJ+∞alklAa
123 81 122 impbid φaJ+∞alklAaxjkjx<A
124 23 123 bitrd φFtJ+∞xjkjx<A