Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: ( X + A ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( X ^ k ) ) . (Contributed by AV, 25-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cply1binom.p | |
|
cply1binom.x | |
||
cply1binom.a | |
||
cply1binom.m | |
||
cply1binom.t | |
||
cply1binom.g | |
||
cply1binom.e | |
||
lply1binomsc.k | |
||
lply1binomsc.s | |
||
lply1binomsc.h | |
||
lply1binomsc.e | |
||
Assertion | lply1binomsc | |