Metamath Proof Explorer


Theorem lply1binomsc

Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: ( X + A ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( X ^ k ) ) . (Contributed by AV, 25-Aug-2019)

Ref Expression
Hypotheses cply1binom.p P=Poly1R
cply1binom.x X=var1R
cply1binom.a +˙=+P
cply1binom.m ×˙=P
cply1binom.t ·˙=P
cply1binom.g G=mulGrpP
cply1binom.e ×˙=G
lply1binomsc.k K=BaseR
lply1binomsc.s S=algScP
lply1binomsc.h H=mulGrpR
lply1binomsc.e E=H
Assertion lply1binomsc RCRingN0AKN×˙X+˙SA=Pk=0N(Nk)·˙SNkEA×˙k×˙X

Proof

Step Hyp Ref Expression
1 cply1binom.p P=Poly1R
2 cply1binom.x X=var1R
3 cply1binom.a +˙=+P
4 cply1binom.m ×˙=P
5 cply1binom.t ·˙=P
6 cply1binom.g G=mulGrpP
7 cply1binom.e ×˙=G
8 lply1binomsc.k K=BaseR
9 lply1binomsc.s S=algScP
10 lply1binomsc.h H=mulGrpR
11 lply1binomsc.e E=H
12 eqid ScalarP=ScalarP
13 crngring RCRingRRing
14 1 ply1ring RRingPRing
15 13 14 syl RCRingPRing
16 15 3ad2ant1 RCRingN0AKPRing
17 1 ply1lmod RRingPLMod
18 13 17 syl RCRingPLMod
19 18 3ad2ant1 RCRingN0AKPLMod
20 eqid BaseScalarP=BaseScalarP
21 eqid BaseP=BaseP
22 9 12 16 19 20 21 asclf RCRingN0AKS:BaseScalarPBaseP
23 1 ply1sca RCRingR=ScalarP
24 23 3ad2ant1 RCRingN0AKR=ScalarP
25 24 fveq2d RCRingN0AKBaseR=BaseScalarP
26 8 25 eqtrid RCRingN0AKK=BaseScalarP
27 26 feq2d RCRingN0AKS:KBasePS:BaseScalarPBaseP
28 22 27 mpbird RCRingN0AKS:KBaseP
29 simp3 RCRingN0AKAK
30 28 29 ffvelcdmd RCRingN0AKSABaseP
31 1 2 3 4 5 6 7 21 lply1binom RCRingN0SABasePN×˙X+˙SA=Pk=0N(Nk)·˙Nk×˙SA×˙k×˙X
32 30 31 syld3an3 RCRingN0AKN×˙X+˙SA=Pk=0N(Nk)·˙Nk×˙SA×˙k×˙X
33 1 ply1assa RCRingPAssAlg
34 33 3ad2ant1 RCRingN0AKPAssAlg
35 34 adantr RCRingN0AKk0NPAssAlg
36 fznn0sub k0NNk0
37 36 adantl RCRingN0AKk0NNk0
38 23 fveq2d RCRingBaseR=BaseScalarP
39 8 38 eqtrid RCRingK=BaseScalarP
40 39 eleq2d RCRingAKABaseScalarP
41 40 biimpa RCRingAKABaseScalarP
42 41 3adant2 RCRingN0AKABaseScalarP
43 42 adantr RCRingN0AKk0NABaseScalarP
44 eqid 1P=1P
45 21 44 ringidcl PRing1PBaseP
46 15 45 syl RCRing1PBaseP
47 46 3ad2ant1 RCRingN0AK1PBaseP
48 47 adantr RCRingN0AKk0N1PBaseP
49 eqid P=P
50 eqid mulGrpScalarP=mulGrpScalarP
51 eqid mulGrpScalarP=mulGrpScalarP
52 21 12 20 49 50 51 6 7 assamulgscm PAssAlgNk0ABaseScalarP1PBasePNk×˙AP1P=NkmulGrpScalarPAPNk×˙1P
53 35 37 43 48 52 syl13anc RCRingN0AKk0NNk×˙AP1P=NkmulGrpScalarPAPNk×˙1P
54 23 fveq2d RCRingmulGrpR=mulGrpScalarP
55 10 54 eqtrid RCRingH=mulGrpScalarP
56 55 fveq2d RCRingH=mulGrpScalarP
57 11 56 eqtrid RCRingE=mulGrpScalarP
58 57 3ad2ant1 RCRingN0AKE=mulGrpScalarP
59 58 adantr RCRingN0AKk0NE=mulGrpScalarP
60 59 eqcomd RCRingN0AKk0NmulGrpScalarP=E
61 60 oveqd RCRingN0AKk0NNkmulGrpScalarPA=NkEA
62 6 ringmgp PRingGMnd
63 15 62 syl RCRingGMnd
64 63 3ad2ant1 RCRingN0AKGMnd
65 6 21 mgpbas BaseP=BaseG
66 6 44 ringidval 1P=0G
67 65 7 66 mulgnn0z GMndNk0Nk×˙1P=1P
68 64 36 67 syl2an RCRingN0AKk0NNk×˙1P=1P
69 61 68 oveq12d RCRingN0AKk0NNkmulGrpScalarPAPNk×˙1P=NkEAP1P
70 53 69 eqtrd RCRingN0AKk0NNk×˙AP1P=NkEAP1P
71 9 12 20 49 44 asclval ABaseScalarPSA=AP1P
72 43 71 syl RCRingN0AKk0NSA=AP1P
73 72 oveq2d RCRingN0AKk0NNk×˙SA=Nk×˙AP1P
74 eqid BaseH=BaseH
75 10 ringmgp RRingHMnd
76 13 75 syl RCRingHMnd
77 76 3ad2ant1 RCRingN0AKHMnd
78 77 adantr RCRingN0AKk0NHMnd
79 simpr RCRingAKAK
80 10 8 mgpbas K=BaseH
81 79 80 eleqtrdi RCRingAKABaseH
82 81 3adant2 RCRingN0AKABaseH
83 82 adantr RCRingN0AKk0NABaseH
84 74 11 78 37 83 mulgnn0cld RCRingN0AKk0NNkEABaseH
85 24 adantr RCRingN0AKk0NR=ScalarP
86 85 eqcomd RCRingN0AKk0NScalarP=R
87 86 fveq2d RCRingN0AKk0NBaseScalarP=BaseR
88 eqid BaseR=BaseR
89 10 88 mgpbas BaseR=BaseH
90 87 89 eqtrdi RCRingN0AKk0NBaseScalarP=BaseH
91 84 90 eleqtrrd RCRingN0AKk0NNkEABaseScalarP
92 9 12 20 49 44 asclval NkEABaseScalarPSNkEA=NkEAP1P
93 91 92 syl RCRingN0AKk0NSNkEA=NkEAP1P
94 70 73 93 3eqtr4d RCRingN0AKk0NNk×˙SA=SNkEA
95 94 oveq1d RCRingN0AKk0NNk×˙SA×˙k×˙X=SNkEA×˙k×˙X
96 95 oveq2d RCRingN0AKk0N(Nk)·˙Nk×˙SA×˙k×˙X=(Nk)·˙SNkEA×˙k×˙X
97 96 mpteq2dva RCRingN0AKk0N(Nk)·˙Nk×˙SA×˙k×˙X=k0N(Nk)·˙SNkEA×˙k×˙X
98 97 oveq2d RCRingN0AKPk=0N(Nk)·˙Nk×˙SA×˙k×˙X=Pk=0N(Nk)·˙SNkEA×˙k×˙X
99 32 98 eqtrd RCRingN0AKN×˙X+˙SA=Pk=0N(Nk)·˙SNkEA×˙k×˙X