| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmsat.o |
|
| 2 |
|
lsmsat.s |
|
| 3 |
|
lsmsat.p |
|
| 4 |
|
lsmsat.a |
|
| 5 |
|
lsmsat.w |
|
| 6 |
|
lsmsat.t |
|
| 7 |
|
lsmsat.u |
|
| 8 |
|
lsmsat.q |
|
| 9 |
|
lsmsat.n |
|
| 10 |
|
lsmsat.l |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
11 12 1 4
|
islsat |
|
| 14 |
5 13
|
syl |
|
| 15 |
8 14
|
mpbid |
|
| 16 |
|
simp3 |
|
| 17 |
10
|
3ad2ant1 |
|
| 18 |
16 17
|
eqsstrrd |
|
| 19 |
5
|
3ad2ant1 |
|
| 20 |
2 3
|
lsmcl |
|
| 21 |
5 6 7 20
|
syl3anc |
|
| 22 |
21
|
3ad2ant1 |
|
| 23 |
|
eldifi |
|
| 24 |
23
|
3ad2ant2 |
|
| 25 |
11 2 12 19 22 24
|
ellspsn5b |
|
| 26 |
18 25
|
mpbird |
|
| 27 |
2
|
lsssssubg |
|
| 28 |
19 27
|
syl |
|
| 29 |
6
|
3ad2ant1 |
|
| 30 |
28 29
|
sseldd |
|
| 31 |
7
|
3ad2ant1 |
|
| 32 |
28 31
|
sseldd |
|
| 33 |
|
eqid |
|
| 34 |
33 3
|
lsmelval |
|
| 35 |
30 32 34
|
syl2anc |
|
| 36 |
26 35
|
mpbid |
|
| 37 |
1 2
|
lssne0 |
|
| 38 |
6 37
|
syl |
|
| 39 |
9 38
|
mpbid |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
3ad2ant1 |
|
| 42 |
41
|
adantr |
|
| 43 |
5
|
adantr |
|
| 44 |
43
|
3ad2ant1 |
|
| 45 |
44
|
adantr |
|
| 46 |
6
|
adantr |
|
| 47 |
46
|
3ad2ant1 |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simpr2 |
|
| 50 |
11 2
|
lssel |
|
| 51 |
48 49 50
|
syl2anc |
|
| 52 |
|
simpr3 |
|
| 53 |
11 12 1 4
|
lsatlspsn2 |
|
| 54 |
45 51 52 53
|
syl3anc |
|
| 55 |
2 12 45 48 49
|
ellspsn5 |
|
| 56 |
|
simpl3 |
|
| 57 |
|
simpr1 |
|
| 58 |
57
|
oveq1d |
|
| 59 |
7
|
adantr |
|
| 60 |
59
|
3ad2ant1 |
|
| 61 |
|
simp2r |
|
| 62 |
11 2
|
lssel |
|
| 63 |
60 61 62
|
syl2anc |
|
| 64 |
63
|
adantr |
|
| 65 |
11 33 1
|
lmod0vlid |
|
| 66 |
45 64 65
|
syl2anc |
|
| 67 |
56 58 66
|
3eqtrd |
|
| 68 |
67
|
sneqd |
|
| 69 |
68
|
fveq2d |
|
| 70 |
2 12 44 60 61
|
ellspsn5 |
|
| 71 |
70
|
adantr |
|
| 72 |
69 71
|
eqsstrd |
|
| 73 |
11 12
|
lspsnsubg |
|
| 74 |
45 51 73
|
syl2anc |
|
| 75 |
45 27
|
syl |
|
| 76 |
60
|
adantr |
|
| 77 |
75 76
|
sseldd |
|
| 78 |
3
|
lsmub2 |
|
| 79 |
74 77 78
|
syl2anc |
|
| 80 |
72 79
|
sstrd |
|
| 81 |
|
sseq1 |
|
| 82 |
|
oveq1 |
|
| 83 |
82
|
sseq2d |
|
| 84 |
81 83
|
anbi12d |
|
| 85 |
84
|
rspcev |
|
| 86 |
54 55 80 85
|
syl12anc |
|
| 87 |
86
|
3exp2 |
|
| 88 |
87
|
imp |
|
| 89 |
88
|
rexlimdv |
|
| 90 |
42 89
|
mpd |
|
| 91 |
44
|
adantr |
|
| 92 |
|
simp2l |
|
| 93 |
11 2
|
lssel |
|
| 94 |
47 92 93
|
syl2anc |
|
| 95 |
94
|
adantr |
|
| 96 |
|
simpr |
|
| 97 |
11 12 1 4
|
lsatlspsn2 |
|
| 98 |
91 95 96 97
|
syl3anc |
|
| 99 |
2 12 44 47 92
|
ellspsn5 |
|
| 100 |
99
|
adantr |
|
| 101 |
|
simp3 |
|
| 102 |
101
|
sneqd |
|
| 103 |
102
|
fveq2d |
|
| 104 |
11 33 12
|
lspvadd |
|
| 105 |
44 94 63 104
|
syl3anc |
|
| 106 |
103 105
|
eqsstrd |
|
| 107 |
11 12 3 44 94 63
|
lsmpr |
|
| 108 |
106 107
|
sseqtrd |
|
| 109 |
44 27
|
syl |
|
| 110 |
11 2 12
|
lspsncl |
|
| 111 |
44 94 110
|
syl2anc |
|
| 112 |
109 111
|
sseldd |
|
| 113 |
109 60
|
sseldd |
|
| 114 |
3
|
lsmless2 |
|
| 115 |
112 113 70 114
|
syl3anc |
|
| 116 |
108 115
|
sstrd |
|
| 117 |
116
|
adantr |
|
| 118 |
|
sseq1 |
|
| 119 |
|
oveq1 |
|
| 120 |
119
|
sseq2d |
|
| 121 |
118 120
|
anbi12d |
|
| 122 |
121
|
rspcev |
|
| 123 |
98 100 117 122
|
syl12anc |
|
| 124 |
90 123
|
pm2.61dane |
|
| 125 |
124
|
3exp |
|
| 126 |
125
|
rexlimdvv |
|
| 127 |
126
|
3adant3 |
|
| 128 |
36 127
|
mpd |
|
| 129 |
|
sseq1 |
|
| 130 |
129
|
anbi2d |
|
| 131 |
130
|
rexbidv |
|
| 132 |
131
|
3ad2ant3 |
|
| 133 |
128 132
|
mpbird |
|
| 134 |
133
|
3exp |
|
| 135 |
134
|
rexlimdv |
|
| 136 |
15 135
|
mpd |
|