Metamath Proof Explorer


Theorem lsmsat

Description: Convert comparison of atom with sum of subspaces to a comparison to sum with atom. ( elpaddatiN analog.) TODO: any way to shorten this? (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses lsmsat.o 0˙=0W
lsmsat.s S=LSubSpW
lsmsat.p ˙=LSSumW
lsmsat.a A=LSAtomsW
lsmsat.w φWLMod
lsmsat.t φTS
lsmsat.u φUS
lsmsat.q φQA
lsmsat.n φT0˙
lsmsat.l φQT˙U
Assertion lsmsat φpApTQp˙U

Proof

Step Hyp Ref Expression
1 lsmsat.o 0˙=0W
2 lsmsat.s S=LSubSpW
3 lsmsat.p ˙=LSSumW
4 lsmsat.a A=LSAtomsW
5 lsmsat.w φWLMod
6 lsmsat.t φTS
7 lsmsat.u φUS
8 lsmsat.q φQA
9 lsmsat.n φT0˙
10 lsmsat.l φQT˙U
11 eqid BaseW=BaseW
12 eqid LSpanW=LSpanW
13 11 12 1 4 islsat WLModQArBaseW0˙Q=LSpanWr
14 5 13 syl φQArBaseW0˙Q=LSpanWr
15 8 14 mpbid φrBaseW0˙Q=LSpanWr
16 simp3 φrBaseW0˙Q=LSpanWrQ=LSpanWr
17 10 3ad2ant1 φrBaseW0˙Q=LSpanWrQT˙U
18 16 17 eqsstrrd φrBaseW0˙Q=LSpanWrLSpanWrT˙U
19 5 3ad2ant1 φrBaseW0˙Q=LSpanWrWLMod
20 2 3 lsmcl WLModTSUST˙US
21 5 6 7 20 syl3anc φT˙US
22 21 3ad2ant1 φrBaseW0˙Q=LSpanWrT˙US
23 eldifi rBaseW0˙rBaseW
24 23 3ad2ant2 φrBaseW0˙Q=LSpanWrrBaseW
25 11 2 12 19 22 24 lspsnel5 φrBaseW0˙Q=LSpanWrrT˙ULSpanWrT˙U
26 18 25 mpbird φrBaseW0˙Q=LSpanWrrT˙U
27 2 lsssssubg WLModSSubGrpW
28 19 27 syl φrBaseW0˙Q=LSpanWrSSubGrpW
29 6 3ad2ant1 φrBaseW0˙Q=LSpanWrTS
30 28 29 sseldd φrBaseW0˙Q=LSpanWrTSubGrpW
31 7 3ad2ant1 φrBaseW0˙Q=LSpanWrUS
32 28 31 sseldd φrBaseW0˙Q=LSpanWrUSubGrpW
33 eqid +W=+W
34 33 3 lsmelval TSubGrpWUSubGrpWrT˙UyTzUr=y+Wz
35 30 32 34 syl2anc φrBaseW0˙Q=LSpanWrrT˙UyTzUr=y+Wz
36 26 35 mpbid φrBaseW0˙Q=LSpanWryTzUr=y+Wz
37 1 2 lssne0 TST0˙qTq0˙
38 6 37 syl φT0˙qTq0˙
39 9 38 mpbid φqTq0˙
40 39 adantr φrBaseW0˙qTq0˙
41 40 3ad2ant1 φrBaseW0˙yTzUr=y+WzqTq0˙
42 41 adantr φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙
43 5 adantr φrBaseW0˙WLMod
44 43 3ad2ant1 φrBaseW0˙yTzUr=y+WzWLMod
45 44 adantr φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙WLMod
46 6 adantr φrBaseW0˙TS
47 46 3ad2ant1 φrBaseW0˙yTzUr=y+WzTS
48 47 adantr φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙TS
49 simpr2 φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙qT
50 11 2 lssel TSqTqBaseW
51 48 49 50 syl2anc φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙qBaseW
52 simpr3 φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙q0˙
53 11 12 1 4 lsatlspsn2 WLModqBaseWq0˙LSpanWqA
54 45 51 52 53 syl3anc φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙LSpanWqA
55 2 12 45 48 49 lspsnel5a φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙LSpanWqT
56 simpl3 φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙r=y+Wz
57 simpr1 φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙y=0˙
58 57 oveq1d φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙y+Wz=0˙+Wz
59 7 adantr φrBaseW0˙US
60 59 3ad2ant1 φrBaseW0˙yTzUr=y+WzUS
61 simp2r φrBaseW0˙yTzUr=y+WzzU
62 11 2 lssel USzUzBaseW
63 60 61 62 syl2anc φrBaseW0˙yTzUr=y+WzzBaseW
64 63 adantr φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙zBaseW
65 11 33 1 lmod0vlid WLModzBaseW0˙+Wz=z
66 45 64 65 syl2anc φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙0˙+Wz=z
67 56 58 66 3eqtrd φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙r=z
68 67 sneqd φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙r=z
69 68 fveq2d φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙LSpanWr=LSpanWz
70 2 12 44 60 61 lspsnel5a φrBaseW0˙yTzUr=y+WzLSpanWzU
71 70 adantr φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙LSpanWzU
72 69 71 eqsstrd φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙LSpanWrU
73 11 12 lspsnsubg WLModqBaseWLSpanWqSubGrpW
74 45 51 73 syl2anc φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙LSpanWqSubGrpW
75 45 27 syl φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙SSubGrpW
76 60 adantr φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙US
77 75 76 sseldd φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙USubGrpW
78 3 lsmub2 LSpanWqSubGrpWUSubGrpWULSpanWq˙U
79 74 77 78 syl2anc φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙ULSpanWq˙U
80 72 79 sstrd φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙LSpanWrLSpanWq˙U
81 sseq1 p=LSpanWqpTLSpanWqT
82 oveq1 p=LSpanWqp˙U=LSpanWq˙U
83 82 sseq2d p=LSpanWqLSpanWrp˙ULSpanWrLSpanWq˙U
84 81 83 anbi12d p=LSpanWqpTLSpanWrp˙ULSpanWqTLSpanWrLSpanWq˙U
85 84 rspcev LSpanWqALSpanWqTLSpanWrLSpanWq˙UpApTLSpanWrp˙U
86 54 55 80 85 syl12anc φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙pApTLSpanWrp˙U
87 86 3exp2 φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙pApTLSpanWrp˙U
88 87 imp φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙pApTLSpanWrp˙U
89 88 rexlimdv φrBaseW0˙yTzUr=y+Wzy=0˙qTq0˙pApTLSpanWrp˙U
90 42 89 mpd φrBaseW0˙yTzUr=y+Wzy=0˙pApTLSpanWrp˙U
91 44 adantr φrBaseW0˙yTzUr=y+Wzy0˙WLMod
92 simp2l φrBaseW0˙yTzUr=y+WzyT
93 11 2 lssel TSyTyBaseW
94 47 92 93 syl2anc φrBaseW0˙yTzUr=y+WzyBaseW
95 94 adantr φrBaseW0˙yTzUr=y+Wzy0˙yBaseW
96 simpr φrBaseW0˙yTzUr=y+Wzy0˙y0˙
97 11 12 1 4 lsatlspsn2 WLModyBaseWy0˙LSpanWyA
98 91 95 96 97 syl3anc φrBaseW0˙yTzUr=y+Wzy0˙LSpanWyA
99 2 12 44 47 92 lspsnel5a φrBaseW0˙yTzUr=y+WzLSpanWyT
100 99 adantr φrBaseW0˙yTzUr=y+Wzy0˙LSpanWyT
101 simp3 φrBaseW0˙yTzUr=y+Wzr=y+Wz
102 101 sneqd φrBaseW0˙yTzUr=y+Wzr=y+Wz
103 102 fveq2d φrBaseW0˙yTzUr=y+WzLSpanWr=LSpanWy+Wz
104 11 33 12 lspvadd WLModyBaseWzBaseWLSpanWy+WzLSpanWyz
105 44 94 63 104 syl3anc φrBaseW0˙yTzUr=y+WzLSpanWy+WzLSpanWyz
106 103 105 eqsstrd φrBaseW0˙yTzUr=y+WzLSpanWrLSpanWyz
107 11 12 3 44 94 63 lsmpr φrBaseW0˙yTzUr=y+WzLSpanWyz=LSpanWy˙LSpanWz
108 106 107 sseqtrd φrBaseW0˙yTzUr=y+WzLSpanWrLSpanWy˙LSpanWz
109 44 27 syl φrBaseW0˙yTzUr=y+WzSSubGrpW
110 11 2 12 lspsncl WLModyBaseWLSpanWyS
111 44 94 110 syl2anc φrBaseW0˙yTzUr=y+WzLSpanWyS
112 109 111 sseldd φrBaseW0˙yTzUr=y+WzLSpanWySubGrpW
113 109 60 sseldd φrBaseW0˙yTzUr=y+WzUSubGrpW
114 3 lsmless2 LSpanWySubGrpWUSubGrpWLSpanWzULSpanWy˙LSpanWzLSpanWy˙U
115 112 113 70 114 syl3anc φrBaseW0˙yTzUr=y+WzLSpanWy˙LSpanWzLSpanWy˙U
116 108 115 sstrd φrBaseW0˙yTzUr=y+WzLSpanWrLSpanWy˙U
117 116 adantr φrBaseW0˙yTzUr=y+Wzy0˙LSpanWrLSpanWy˙U
118 sseq1 p=LSpanWypTLSpanWyT
119 oveq1 p=LSpanWyp˙U=LSpanWy˙U
120 119 sseq2d p=LSpanWyLSpanWrp˙ULSpanWrLSpanWy˙U
121 118 120 anbi12d p=LSpanWypTLSpanWrp˙ULSpanWyTLSpanWrLSpanWy˙U
122 121 rspcev LSpanWyALSpanWyTLSpanWrLSpanWy˙UpApTLSpanWrp˙U
123 98 100 117 122 syl12anc φrBaseW0˙yTzUr=y+Wzy0˙pApTLSpanWrp˙U
124 90 123 pm2.61dane φrBaseW0˙yTzUr=y+WzpApTLSpanWrp˙U
125 124 3exp φrBaseW0˙yTzUr=y+WzpApTLSpanWrp˙U
126 125 rexlimdvv φrBaseW0˙yTzUr=y+WzpApTLSpanWrp˙U
127 126 3adant3 φrBaseW0˙Q=LSpanWryTzUr=y+WzpApTLSpanWrp˙U
128 36 127 mpd φrBaseW0˙Q=LSpanWrpApTLSpanWrp˙U
129 sseq1 Q=LSpanWrQp˙ULSpanWrp˙U
130 129 anbi2d Q=LSpanWrpTQp˙UpTLSpanWrp˙U
131 130 rexbidv Q=LSpanWrpApTQp˙UpApTLSpanWrp˙U
132 131 3ad2ant3 φrBaseW0˙Q=LSpanWrpApTQp˙UpApTLSpanWrp˙U
133 128 132 mpbird φrBaseW0˙Q=LSpanWrpApTQp˙U
134 133 3exp φrBaseW0˙Q=LSpanWrpApTQp˙U
135 134 rexlimdv φrBaseW0˙Q=LSpanWrpApTQp˙U
136 15 135 mpd φpApTQp˙U