Metamath Proof Explorer


Theorem lspexch

Description: Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 versus lspexchn2 ); look for lspexch and prcom in same proof. TODO: would a hypothesis of -. X e. ( N{ Z } ) instead of ( N{ X } ) =/= ( N{ Z } ) be better overall? This would be shorter and also satisfy the X =/= .0. condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the =/= pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses lspexch.v V=BaseW
lspexch.o 0˙=0W
lspexch.n N=LSpanW
lspexch.w φWLVec
lspexch.x φXV0˙
lspexch.y φYV
lspexch.z φZV
lspexch.q φNXNZ
lspexch.e φXNYZ
Assertion lspexch φYNXZ

Proof

Step Hyp Ref Expression
1 lspexch.v V=BaseW
2 lspexch.o 0˙=0W
3 lspexch.n N=LSpanW
4 lspexch.w φWLVec
5 lspexch.x φXV0˙
6 lspexch.y φYV
7 lspexch.z φZV
8 lspexch.q φNXNZ
9 lspexch.e φXNYZ
10 eqid +W=+W
11 eqid ScalarW=ScalarW
12 eqid BaseScalarW=BaseScalarW
13 eqid W=W
14 lveclmod WLVecWLMod
15 4 14 syl φWLMod
16 1 10 11 12 13 3 15 6 7 lspprel φXNYZjBaseScalarWkBaseScalarWX=jWY+WkWZ
17 9 16 mpbid φjBaseScalarWkBaseScalarWX=jWY+WkWZ
18 eqid -W=-W
19 eqid invgScalarW=invgScalarW
20 4 3ad2ant1 φjBaseScalarWkBaseScalarWX=jWY+WkWZWLVec
21 20 14 syl φjBaseScalarWkBaseScalarWX=jWY+WkWZWLMod
22 simp2r φjBaseScalarWkBaseScalarWX=jWY+WkWZkBaseScalarW
23 5 3ad2ant1 φjBaseScalarWkBaseScalarWX=jWY+WkWZXV0˙
24 23 eldifad φjBaseScalarWkBaseScalarWX=jWY+WkWZXV
25 7 3ad2ant1 φjBaseScalarWkBaseScalarWX=jWY+WkWZZV
26 1 10 18 13 11 12 19 21 22 24 25 lmodsubvs φjBaseScalarWkBaseScalarWX=jWY+WkWZX-WkWZ=X+WinvgScalarWkWZ
27 simp3 φjBaseScalarWkBaseScalarWX=jWY+WkWZX=jWY+WkWZ
28 27 eqcomd φjBaseScalarWkBaseScalarWX=jWY+WkWZjWY+WkWZ=X
29 15 3ad2ant1 φjBaseScalarWkBaseScalarWX=jWY+WkWZWLMod
30 lmodgrp WLModWGrp
31 29 30 syl φjBaseScalarWkBaseScalarWX=jWY+WkWZWGrp
32 1 11 13 12 lmodvscl WLModkBaseScalarWZVkWZV
33 21 22 25 32 syl3anc φjBaseScalarWkBaseScalarWX=jWY+WkWZkWZV
34 simp2l φjBaseScalarWkBaseScalarWX=jWY+WkWZjBaseScalarW
35 6 3ad2ant1 φjBaseScalarWkBaseScalarWX=jWY+WkWZYV
36 1 11 13 12 lmodvscl WLModjBaseScalarWYVjWYV
37 21 34 35 36 syl3anc φjBaseScalarWkBaseScalarWX=jWY+WkWZjWYV
38 1 10 18 grpsubadd WGrpXVkWZVjWYVX-WkWZ=jWYjWY+WkWZ=X
39 31 24 33 37 38 syl13anc φjBaseScalarWkBaseScalarWX=jWY+WkWZX-WkWZ=jWYjWY+WkWZ=X
40 28 39 mpbird φjBaseScalarWkBaseScalarWX=jWY+WkWZX-WkWZ=jWY
41 26 40 eqtr3d φjBaseScalarWkBaseScalarWX=jWY+WkWZX+WinvgScalarWkWZ=jWY
42 eqid 0ScalarW=0ScalarW
43 eqid invrScalarW=invrScalarW
44 8 3ad2ant1 φjBaseScalarWkBaseScalarWX=jWY+WkWZNXNZ
45 20 adantr φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWWLVec
46 25 adantr φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWZV
47 27 adantr φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWX=jWY+WkWZ
48 oveq1 j=0ScalarWjWY=0ScalarWWY
49 48 oveq1d j=0ScalarWjWY+WkWZ=0ScalarWWY+WkWZ
50 1 11 13 42 2 lmod0vs WLModYV0ScalarWWY=0˙
51 21 35 50 syl2anc φjBaseScalarWkBaseScalarWX=jWY+WkWZ0ScalarWWY=0˙
52 51 oveq1d φjBaseScalarWkBaseScalarWX=jWY+WkWZ0ScalarWWY+WkWZ=0˙+WkWZ
53 1 10 2 lmod0vlid WLModkWZV0˙+WkWZ=kWZ
54 21 33 53 syl2anc φjBaseScalarWkBaseScalarWX=jWY+WkWZ0˙+WkWZ=kWZ
55 52 54 eqtrd φjBaseScalarWkBaseScalarWX=jWY+WkWZ0ScalarWWY+WkWZ=kWZ
56 49 55 sylan9eqr φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWjWY+WkWZ=kWZ
57 47 56 eqtrd φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWX=kWZ
58 1 13 11 12 3 21 22 25 lspsneli φjBaseScalarWkBaseScalarWX=jWY+WkWZkWZNZ
59 58 adantr φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWkWZNZ
60 57 59 eqeltrd φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWXNZ
61 eldifsni XV0˙X0˙
62 23 61 syl φjBaseScalarWkBaseScalarWX=jWY+WkWZX0˙
63 62 adantr φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWX0˙
64 1 2 3 45 46 60 63 lspsneleq φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWNX=NZ
65 64 ex φjBaseScalarWkBaseScalarWX=jWY+WkWZj=0ScalarWNX=NZ
66 65 necon3d φjBaseScalarWkBaseScalarWX=jWY+WkWZNXNZj0ScalarW
67 44 66 mpd φjBaseScalarWkBaseScalarWX=jWY+WkWZj0ScalarW
68 eldifsn jBaseScalarW0ScalarWjBaseScalarWj0ScalarW
69 34 67 68 sylanbrc φjBaseScalarWkBaseScalarWX=jWY+WkWZjBaseScalarW0ScalarW
70 11 lmodfgrp WLModScalarWGrp
71 29 70 syl φjBaseScalarWkBaseScalarWX=jWY+WkWZScalarWGrp
72 12 19 grpinvcl ScalarWGrpkBaseScalarWinvgScalarWkBaseScalarW
73 71 22 72 syl2anc φjBaseScalarWkBaseScalarWX=jWY+WkWZinvgScalarWkBaseScalarW
74 1 11 13 12 lmodvscl WLModinvgScalarWkBaseScalarWZVinvgScalarWkWZV
75 21 73 25 74 syl3anc φjBaseScalarWkBaseScalarWX=jWY+WkWZinvgScalarWkWZV
76 1 10 lmodvacl WLModXVinvgScalarWkWZVX+WinvgScalarWkWZV
77 21 24 75 76 syl3anc φjBaseScalarWkBaseScalarWX=jWY+WkWZX+WinvgScalarWkWZV
78 1 13 11 12 42 43 20 69 77 35 lvecinv φjBaseScalarWkBaseScalarWX=jWY+WkWZX+WinvgScalarWkWZ=jWYY=invrScalarWjWX+WinvgScalarWkWZ
79 41 78 mpbid φjBaseScalarWkBaseScalarWX=jWY+WkWZY=invrScalarWjWX+WinvgScalarWkWZ
80 eqid LSubSpW=LSubSpW
81 1 80 3 21 24 25 lspprcl φjBaseScalarWkBaseScalarWX=jWY+WkWZNXZLSubSpW
82 11 lvecdrng WLVecScalarWDivRing
83 20 82 syl φjBaseScalarWkBaseScalarWX=jWY+WkWZScalarWDivRing
84 12 42 43 drnginvrcl ScalarWDivRingjBaseScalarWj0ScalarWinvrScalarWjBaseScalarW
85 83 34 67 84 syl3anc φjBaseScalarWkBaseScalarWX=jWY+WkWZinvrScalarWjBaseScalarW
86 eqid 1ScalarW=1ScalarW
87 1 11 13 86 lmodvs1 WLModXV1ScalarWWX=X
88 21 24 87 syl2anc φjBaseScalarWkBaseScalarWX=jWY+WkWZ1ScalarWWX=X
89 88 oveq1d φjBaseScalarWkBaseScalarWX=jWY+WkWZ1ScalarWWX+WinvgScalarWkWZ=X+WinvgScalarWkWZ
90 11 lmodring WLModScalarWRing
91 12 86 ringidcl ScalarWRing1ScalarWBaseScalarW
92 21 90 91 3syl φjBaseScalarWkBaseScalarWX=jWY+WkWZ1ScalarWBaseScalarW
93 1 10 13 11 12 3 21 92 73 24 25 lsppreli φjBaseScalarWkBaseScalarWX=jWY+WkWZ1ScalarWWX+WinvgScalarWkWZNXZ
94 89 93 eqeltrrd φjBaseScalarWkBaseScalarWX=jWY+WkWZX+WinvgScalarWkWZNXZ
95 11 13 12 80 lssvscl WLModNXZLSubSpWinvrScalarWjBaseScalarWX+WinvgScalarWkWZNXZinvrScalarWjWX+WinvgScalarWkWZNXZ
96 21 81 85 94 95 syl22anc φjBaseScalarWkBaseScalarWX=jWY+WkWZinvrScalarWjWX+WinvgScalarWkWZNXZ
97 79 96 eqeltrd φjBaseScalarWkBaseScalarWX=jWY+WkWZYNXZ
98 97 3exp φjBaseScalarWkBaseScalarWX=jWY+WkWZYNXZ
99 98 rexlimdvv φjBaseScalarWkBaseScalarWX=jWY+WkWZYNXZ
100 17 99 mpd φYNXZ