Metamath Proof Explorer


Theorem mapdordlem2

Description: Lemma for mapdord . Ordering property of projectivity M . TODO: This was proved using some hacked-up older proofs. Maybe simplify; get rid of the T hypothesis. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses mapdord.h H=LHypK
mapdord.u U=DVecHKW
mapdord.s S=LSubSpU
mapdord.m M=mapdKW
mapdord.k φKHLWH
mapdord.x φXS
mapdord.y φYS
mapdord.o O=ocHKW
mapdord.a A=LSAtomsU
mapdord.f F=LFnlU
mapdord.c J=LSHypU
mapdord.l L=LKerU
mapdord.t T=gF|OOLgJ
mapdord.q C=gF|OOLg=Lg
Assertion mapdordlem2 φMXMYXY

Proof

Step Hyp Ref Expression
1 mapdord.h H=LHypK
2 mapdord.u U=DVecHKW
3 mapdord.s S=LSubSpU
4 mapdord.m M=mapdKW
5 mapdord.k φKHLWH
6 mapdord.x φXS
7 mapdord.y φYS
8 mapdord.o O=ocHKW
9 mapdord.a A=LSAtomsU
10 mapdord.f F=LFnlU
11 mapdord.c J=LSHypU
12 mapdord.l L=LKerU
13 mapdord.t T=gF|OOLgJ
14 mapdord.q C=gF|OOLg=Lg
15 1 2 3 10 12 8 4 5 6 14 mapdvalc φMX=fC|OLfX
16 1 2 3 10 12 8 4 5 7 14 mapdvalc φMY=fC|OLfY
17 15 16 sseq12d φMXMYfC|OLfXfC|OLfY
18 ss2rab fC|OLfXfC|OLfYfCOLfXOLfY
19 eqid BaseU=BaseU
20 1 8 2 19 11 10 12 13 14 5 mapdordlem1a φfTfCOOLfJ
21 simprl φfCOOLfJfC
22 idd φfCOOLfJOLfXOLfYOLfXOLfY
23 21 22 embantd φfCOOLfJfCOLfXOLfYOLfXOLfY
24 23 ex φfCOOLfJfCOLfXOLfYOLfXOLfY
25 20 24 sylbid φfTfCOLfXOLfYOLfXOLfY
26 25 com23 φfCOLfXOLfYfTOLfXOLfY
27 26 ralimdv2 φfCOLfXOLfYfTOLfXOLfY
28 18 27 biimtrid φfC|OLfXfC|OLfYfTOLfXOLfY
29 1 2 5 dvhlmod φULMod
30 3 9 29 6 7 lssatle φXYpApXpY
31 13 mapdordlem1 fTfFOOLfJ
32 31 simprbi fTOOLfJ
33 32 adantl φfTOOLfJ
34 5 adantr φfTKHLWH
35 31 simplbi fTfF
36 35 adantl φfTfF
37 1 8 2 10 11 12 34 36 dochlkr φfTOOLfJOOLf=LfLfJ
38 33 37 mpbid φfTOOLf=LfLfJ
39 38 simpld φfTOOLf=Lf
40 38 simprd φfTLfJ
41 1 8 2 9 11 34 40 dochshpsat φfTOOLf=LfOLfA
42 39 41 mpbid φfTOLfA
43 1 2 5 dvhlvec φULVec
44 43 adantr φpAULVec
45 5 adantr φpAKHLWH
46 simpr φpApA
47 1 2 8 9 11 45 46 dochsatshp φpAOpJ
48 11 10 12 lshpkrex ULVecOpJfFLf=Op
49 44 47 48 syl2anc φpAfFLf=Op
50 df-rex fFLf=OpffFLf=Op
51 49 50 sylib φpAffFLf=Op
52 simprl φpAfFLf=OpfF
53 simprr φpAfFLf=OpLf=Op
54 53 fveq2d φpAfFLf=OpOLf=OOp
55 54 fveq2d φpAfFLf=OpOOLf=OOOp
56 29 adantr φpAULMod
57 19 9 56 46 lsatssv φpApBaseU
58 eqid DIsoHKW=DIsoHKW
59 1 58 2 19 8 dochcl KHLWHpBaseUOpranDIsoHKW
60 45 57 59 syl2anc φpAOpranDIsoHKW
61 1 58 8 dochoc KHLWHOpranDIsoHKWOOOp=Op
62 45 60 61 syl2anc φpAOOOp=Op
63 62 adantr φpAfFLf=OpOOOp=Op
64 55 63 eqtrd φpAfFLf=OpOOLf=Op
65 47 adantr φpAfFLf=OpOpJ
66 64 65 eqeltrd φpAfFLf=OpOOLfJ
67 52 66 31 sylanbrc φpAfFLf=OpfT
68 1 2 58 9 dih1dimat KHLWHpApranDIsoHKW
69 45 46 68 syl2anc φpApranDIsoHKW
70 1 58 8 dochoc KHLWHpranDIsoHKWOOp=p
71 45 69 70 syl2anc φpAOOp=p
72 71 adantr φpAfFLf=OpOOp=p
73 54 72 eqtr2d φpAfFLf=Opp=OLf
74 67 73 jca φpAfFLf=OpfTp=OLf
75 74 ex φpAfFLf=OpfTp=OLf
76 75 eximdv φpAffFLf=OpffTp=OLf
77 51 76 mpd φpAffTp=OLf
78 df-rex fTp=OLfffTp=OLf
79 77 78 sylibr φpAfTp=OLf
80 sseq1 p=OLfpXOLfX
81 sseq1 p=OLfpYOLfY
82 80 81 imbi12d p=OLfpXpYOLfXOLfY
83 82 adantl φp=OLfpXpYOLfXOLfY
84 42 79 83 ralxfrd φpApXpYfTOLfXOLfY
85 30 84 bitr2d φfTOLfXOLfYXY
86 28 85 sylibd φfC|OLfXfC|OLfYXY
87 simplr φXYfCXY
88 sstr OLfXXYOLfY
89 88 ancoms XYOLfXOLfY
90 89 a1i φXYfCXYOLfXOLfY
91 87 90 mpand φXYfCOLfXOLfY
92 91 ss2rabdv φXYfC|OLfXfC|OLfY
93 92 ex φXYfC|OLfXfC|OLfY
94 86 93 impbid φfC|OLfXfC|OLfYXY
95 17 94 bitrd φMXMYXY