Metamath Proof Explorer


Theorem mcubic

Description: Solutions to a monic cubic equation, a special case of cubic . (Contributed by Mario Carneiro, 24-Apr-2015)

Ref Expression
Hypotheses mcubic.b φB
mcubic.c φC
mcubic.d φD
mcubic.x φX
mcubic.t φT
mcubic.3 φT3=N+G2
mcubic.g φG
mcubic.2 φG2=N24M3
mcubic.m φM=B23C
mcubic.n φN=2B3-9BC+27D
mcubic.0 φT0
Assertion mcubic φX3+BX2+CX+D=0rr3=1X=B+rT+MrT3

Proof

Step Hyp Ref Expression
1 mcubic.b φB
2 mcubic.c φC
3 mcubic.d φD
4 mcubic.x φX
5 mcubic.t φT
6 mcubic.3 φT3=N+G2
7 mcubic.g φG
8 mcubic.2 φG2=N24M3
9 mcubic.m φM=B23C
10 mcubic.n φN=2B3-9BC+27D
11 mcubic.0 φT0
12 1 sqcld φB2
13 3cn 3
14 mulcl 3C3C
15 13 2 14 sylancr φ3C
16 12 15 subcld φB23C
17 9 16 eqeltrd φM
18 13 a1i φ3
19 3ne0 30
20 19 a1i φ30
21 17 18 20 divcld φM3
22 21 negcld φM3
23 2cn 2
24 3nn0 30
25 expcl B30B3
26 1 24 25 sylancl φB3
27 mulcl 2B32B3
28 23 26 27 sylancr φ2B3
29 9cn 9
30 1 2 mulcld φBC
31 mulcl 9BC9BC
32 29 30 31 sylancr φ9BC
33 28 32 subcld φ2B39BC
34 2nn0 20
35 7nn 7
36 34 35 decnncl 27
37 36 nncni 27
38 mulcl 27D27D
39 37 3 38 sylancr φ27D
40 33 39 addcld φ2B3-9BC+27D
41 10 40 eqeltrd φN
42 37 a1i φ27
43 36 nnne0i 270
44 43 a1i φ270
45 41 42 44 divcld φN27
46 1 18 20 divcld φB3
47 4 46 addcld φX+B3
48 5 18 20 divcld φT3
49 48 negcld φT3
50 3nn 3
51 50 a1i φ3
52 n2dvds3 ¬23
53 52 a1i φ¬23
54 oexpneg T33¬23T33=T33
55 48 51 53 54 syl3anc φT33=T33
56 24 a1i φ30
57 5 18 20 56 expdivd φT33=T333
58 3exp3 33=27
59 58 a1i φ33=27
60 6 59 oveq12d φT333=N+G227
61 41 7 addcld φN+G
62 2cnd φ2
63 2ne0 20
64 63 a1i φ20
65 61 62 42 64 44 divdiv32d φN+G227=N+G272
66 41 7 addcomd φN+G=G+N
67 66 oveq1d φN+G27=G+N27
68 7 41 42 44 divdird φG+N27=G27+N27
69 67 68 eqtrd φN+G27=G27+N27
70 69 oveq1d φN+G272=G27+N272
71 7 42 44 divcld φG27
72 71 45 62 64 divdird φG27+N272=G272+N272
73 65 70 72 3eqtrd φN+G227=G272+N272
74 57 60 73 3eqtrd φT33=G272+N272
75 74 negeqd φT33=G272+N272
76 71 halfcld φG272
77 45 halfcld φN272
78 76 77 negdi2d φG272+N272=-G272-N272
79 55 75 78 3eqtrd φT33=-G272-N272
80 76 negcld φG272
81 sqneg G272G2722=G2722
82 76 81 syl φG2722=G2722
83 71 62 64 sqdivd φG2722=G27222
84 45 62 64 sqdivd φN2722=N27222
85 41 42 44 sqdivd φN272=N2272
86 85 oveq1d φN27222=N227222
87 84 86 eqtr2d φN227222=N2722
88 4cn 4
89 88 a1i φ4
90 expcl M30M3
91 17 24 90 sylancl φM3
92 37 sqcli 272
93 92 a1i φ272
94 sqne0 272720270
95 42 94 syl φ2720270
96 44 95 mpbird φ2720
97 89 91 93 96 divassd φ4M3272=4M3272
98 29 a1i φ9
99 9nn 9
100 99 nnne0i 90
101 100 a1i φ90
102 17 98 101 56 expdivd φM93=M393
103 23 13 mulcomi 23=32
104 103 oveq2i 323=332
105 expmul 32030323=323
106 13 34 24 105 mp3an 323=323
107 expmul 33020332=332
108 13 24 34 107 mp3an 332=332
109 104 106 108 3eqtr3i 323=332
110 sq3 32=9
111 110 oveq1i 323=93
112 58 oveq1i 332=272
113 109 111 112 3eqtr3i 93=272
114 113 oveq2i M393=M3272
115 102 114 eqtrdi φM93=M3272
116 115 oveq2d φ4M93=4M3272
117 97 116 eqtr4d φ4M3272=4M93
118 117 oveq1d φ4M327222=4M9322
119 sq2 22=4
120 119 oveq2i 4M9322=4M934
121 17 98 101 divcld φM9
122 expcl M930M93
123 121 24 122 sylancl φM93
124 4ne0 40
125 124 a1i φ40
126 123 89 125 divcan3d φ4M934=M93
127 120 126 eqtrid φ4M9322=M93
128 118 127 eqtrd φ4M327222=M93
129 87 128 oveq12d φN2272224M327222=N2722M93
130 41 sqcld φN2
131 130 93 96 divcld φN2272
132 mulcl 4M34M3
133 88 91 132 sylancr φ4M3
134 133 93 96 divcld φ4M3272
135 23 sqcli 22
136 135 a1i φ22
137 119 124 eqnetri 220
138 137 a1i φ220
139 131 134 136 138 divsubdird φN22724M327222=N2272224M327222
140 77 sqcld φN2722
141 140 123 negsubd φN2722+M93=N2722M93
142 129 139 141 3eqtr4d φN22724M327222=N2722+M93
143 7 42 44 sqdivd φG272=G2272
144 8 oveq1d φG2272=N24M3272
145 130 133 93 96 divsubdird φN24M3272=N22724M3272
146 143 144 145 3eqtrd φG272=N22724M3272
147 146 oveq1d φG27222=N22724M327222
148 oexpneg M93¬23M93=M93
149 121 51 53 148 syl3anc φM93=M93
150 149 oveq2d φN2722+M93=N2722+M93
151 142 147 150 3eqtr4d φG27222=N2722+M93
152 82 83 151 3eqtrd φG2722=N2722+M93
153 17 18 18 20 20 divdiv1d φM33=M33
154 3t3e9 33=9
155 154 oveq2i M33=M9
156 153 155 eqtrdi φM33=M9
157 156 negeqd φM33=M9
158 21 18 20 divnegd φM33=M33
159 157 158 eqtr3d φM9=M33
160 eqidd φN272=N272
161 5 18 11 20 divne0d φT30
162 48 161 negne0d φT30
163 22 45 47 49 79 80 152 159 160 162 dcubic φX+B33+M3X+B3+N27=0rr3=1X+B3=rT3M9rT3
164 binom3 XB3X+B33=X3+3X2B3+3XB32+B33
165 4 46 164 syl2anc φX+B33=X3+3X2B3+3XB32+B33
166 4 sqcld φX2
167 18 166 46 mul12d φ3X2B3=X23B3
168 1 18 20 divcan2d φ3B3=B
169 168 oveq2d φX23B3=X2B
170 166 1 mulcomd φX2B=BX2
171 167 169 170 3eqtrd φ3X2B3=BX2
172 171 oveq2d φX3+3X2B3=X3+BX2
173 172 oveq1d φX3+3X2B3+3XB32+B33=X3+BX2+3XB32+B33
174 165 173 eqtrd φX+B33=X3+BX2+3XB32+B33
175 174 oveq1d φX+B33+M3X+B3+N27=X3+BX2+3XB32+B33+M3X+B3+N27
176 expcl X30X3
177 4 24 176 sylancl φX3
178 1 166 mulcld φBX2
179 177 178 addcld φX3+BX2
180 46 sqcld φB32
181 4 180 mulcld φXB32
182 18 181 mulcld φ3XB32
183 expcl B330B33
184 46 24 183 sylancl φB33
185 182 184 addcld φ3XB32+B33
186 22 47 mulcld φM3X+B3
187 186 45 addcld φM3X+B3+N27
188 179 185 187 addassd φX3+BX2+3XB32+B33+M3X+B3+N27=X3+BX2+3XB32+B33+M3X+B3+N27
189 22 4 46 adddid φM3X+B3=M3X+M3B3
190 189 oveq1d φM3X+B3+N27=M3X+M3B3+N27
191 22 4 mulcld φM3X
192 22 46 mulcld φM3B3
193 191 192 45 addassd φM3X+M3B3+N27=M3X+M3B3+N27
194 9 oveq1d φM3=B23C3
195 12 15 18 20 divsubdird φB23C3=B233C3
196 2 18 20 divcan3d φ3C3=C
197 196 oveq2d φB233C3=B23C
198 194 195 197 3eqtrd φM3=B23C
199 198 negeqd φM3=B23C
200 12 18 20 divcld φB23
201 200 2 negsubdi2d φB23C=CB23
202 199 201 eqtrd φM3=CB23
203 202 oveq1d φM3X=CB23X
204 2 200 4 subdird φCB23X=CXB23X
205 200 4 mulcomd φB23X=XB23
206 13 sqvali 32=33
207 206 oveq2i B232=B233
208 1 18 20 sqdivd φB32=B232
209 12 18 18 20 20 divdiv1d φB233=B233
210 207 208 209 3eqtr4a φB32=B233
211 210 oveq2d φ3B32=3B233
212 200 18 20 divcan2d φ3B233=B23
213 211 212 eqtrd φ3B32=B23
214 213 oveq2d φX3B32=XB23
215 4 18 180 mul12d φX3B32=3XB32
216 205 214 215 3eqtr2d φB23X=3XB32
217 216 oveq2d φCXB23X=CX3XB32
218 203 204 217 3eqtrd φM3X=CX3XB32
219 202 oveq1d φM3B3=CB23B3
220 2 200 46 subdird φCB23B3=CB3B23B3
221 2 1 18 20 divassd φCB3=CB3
222 2 1 mulcomd φCB=BC
223 222 oveq1d φCB3=BC3
224 221 223 eqtr3d φCB3=BC3
225 12 18 1 18 20 20 divmuldivd φB23B3=B2B33
226 df-3 3=2+1
227 226 oveq2i B3=B2+1
228 expp1 B20B2+1=B2B
229 1 34 228 sylancl φB2+1=B2B
230 227 229 eqtr2id φB2B=B3
231 154 a1i φ33=9
232 230 231 oveq12d φB2B33=B39
233 225 232 eqtrd φB23B3=B39
234 224 233 oveq12d φCB3B23B3=BC3B39
235 219 220 234 3eqtrd φM3B3=BC3B39
236 10 oveq1d φN27=2B3-9BC+27D27
237 33 39 42 44 divdird φ2B3-9BC+27D27=2B39BC27+27D27
238 28 32 42 44 divsubdird φ2B39BC27=2B3279BC27
239 9t3e27 93=27
240 239 oveq2i 9BC93=9BC27
241 30 18 98 20 101 divcan5d φ9BC93=BC3
242 240 241 eqtr3id φ9BC27=BC3
243 242 oveq2d φ2B3279BC27=2B327BC3
244 238 243 eqtrd φ2B39BC27=2B327BC3
245 3 42 44 divcan3d φ27D27=D
246 244 245 oveq12d φ2B39BC27+27D27=2B327-BC3+D
247 236 237 246 3eqtrd φN27=2B327-BC3+D
248 235 247 oveq12d φM3B3+N27=BC3B39+2B327BC3+D
249 26 98 101 divcld φB39
250 28 42 44 divcld φ2B327
251 249 250 negsubdi2d φB392B327=2B327B39
252 1 18 20 56 expdivd φB33=B333
253 58 oveq2i B333=B327
254 ax-1cn 1
255 2p1e3 2+1=3
256 13 23 254 255 subaddrii 32=1
257 256 oveq1i 32B3=1B3
258 26 mullidd φ1B3=B3
259 257 258 eqtrid φ32B3=B3
260 18 62 26 subdird φ32B3=3B32B3
261 259 260 eqtr3d φB3=3B32B3
262 261 oveq1d φB327=3B32B327
263 mulcl 3B33B3
264 13 26 263 sylancr φ3B3
265 264 28 42 44 divsubdird φ3B32B327=3B3272B327
266 262 265 eqtrd φB327=3B3272B327
267 253 266 eqtrid φB333=3B3272B327
268 29 13 239 mulcomli 39=27
269 268 oveq2i 3B339=3B327
270 26 98 18 101 20 divcan5d φ3B339=B39
271 269 270 eqtr3id φ3B327=B39
272 271 oveq1d φ3B3272B327=B392B327
273 252 267 272 3eqtrd φB33=B392B327
274 273 negeqd φB33=B392B327
275 30 18 20 divcld φBC3
276 275 249 250 npncan3d φBC3B39+2B327-BC3=2B327B39
277 251 274 276 3eqtr4d φB33=BC3B39+2B327-BC3
278 277 oveq1d φ-B33+D=BC3B39+2B327BC3+D
279 184 negcld φB33
280 279 3 addcomd φ-B33+D=D+B33
281 235 192 eqeltrrd φBC3B39
282 250 275 subcld φ2B327BC3
283 281 282 3 addassd φBC3B39+2B327BC3+D=BC3B39+2B327BC3+D
284 278 280 283 3eqtr3d φD+B33=BC3B39+2B327BC3+D
285 3 184 negsubd φD+B33=DB33
286 248 284 285 3eqtr2d φM3B3+N27=DB33
287 218 286 oveq12d φM3X+M3B3+N27=CX3XB32+D-B33
288 190 193 287 3eqtrd φM3X+B3+N27=CX3XB32+D-B33
289 2 4 mulcld φCX
290 289 3 182 184 addsub4d φCX+D-3XB32+B33=CX3XB32+D-B33
291 288 290 eqtr4d φM3X+B3+N27=CX+D-3XB32+B33
292 291 oveq2d φ3XB32+B33+M3X+B3+N27=3XB32+B33+CX+D-3XB32+B33
293 289 3 addcld φCX+D
294 185 293 pncan3d φ3XB32+B33+CX+D-3XB32+B33=CX+D
295 292 294 eqtrd φ3XB32+B33+M3X+B3+N27=CX+D
296 295 oveq2d φX3+BX2+3XB32+B33+M3X+B3+N27=X3+BX2+CX+D
297 175 188 296 3eqtrd φX+B33+M3X+B3+N27=X3+BX2+CX+D
298 297 eqeq1d φX+B33+M3X+B3+N27=0X3+BX2+CX+D=0
299 oveq1 r=0r3=03
300 0exp 303=0
301 50 300 ax-mp 03=0
302 299 301 eqtrdi r=0r3=0
303 0ne1 01
304 303 a1i r=001
305 302 304 eqnetrd r=0r31
306 305 necon2i r3=1r0
307 eqcom X=B+rT+MrT3B+rT+MrT3=X
308 1 adantr φrr0B
309 simprl φrr0r
310 5 adantr φrr0T
311 309 310 mulcld φrr0rT
312 17 adantr φrr0M
313 simprr φrr0r0
314 11 adantr φrr0T0
315 309 310 313 314 mulne0d φrr0rT0
316 312 311 315 divcld φrr0MrT
317 311 316 addcld φrr0rT+MrT
318 13 a1i φrr03
319 19 a1i φrr030
320 308 317 318 319 divdird φrr0B+rT+MrT3=B3+rT+MrT3
321 308 311 316 addassd φrr0B+rT+MrT=B+rT+MrT
322 321 oveq1d φrr0B+rT+MrT3=B+rT+MrT3
323 46 adantr φrr0B3
324 317 318 319 divcld φrr0rT+MrT3
325 323 324 subnegd φrr0B3rT+MrT3=B3+rT+MrT3
326 320 322 325 3eqtr4d φrr0B+rT+MrT3=B3rT+MrT3
327 326 negeqd φrr0B+rT+MrT3=B3rT+MrT3
328 324 negcld φrr0rT+MrT3
329 323 328 negsubdi2d φrr0B3rT+MrT3=-rT+MrT3-B3
330 327 329 eqtrd φrr0B+rT+MrT3=-rT+MrT3-B3
331 330 eqeq1d φrr0B+rT+MrT3=X-rT+MrT3-B3=X
332 307 331 bitrid φrr0X=B+rT+MrT3-rT+MrT3-B3=X
333 4 adantr φrr0X
334 328 323 333 subadd2d φrr0-rT+MrT3-B3=XX+B3=rT+MrT3
335 311 316 318 319 divdird φrr0rT+MrT3=rT3+MrT3
336 335 negeqd φrr0rT+MrT3=rT3+MrT3
337 311 318 319 divcld φrr0rT3
338 316 318 319 divcld φrr0MrT3
339 337 338 negdi2d φrr0rT3+MrT3=-rT3-MrT3
340 309 310 318 319 divassd φrr0rT3=rT3
341 340 negeqd φrr0rT3=rT3
342 48 adantr φrr0T3
343 309 342 mulneg2d φrr0rT3=rT3
344 341 343 eqtr4d φrr0rT3=rT3
345 312 311 318 315 319 divdiv32d φrr0MrT3=M3rT
346 21 adantr φrr0M3
347 346 311 318 315 319 divcan7d φrr0M33rT3=M3rT
348 156 oveq1d φM33rT3=M9rT3
349 348 adantr φrr0M33rT3=M9rT3
350 345 347 349 3eqtr2d φrr0MrT3=M9rT3
351 121 adantr φrr0M9
352 311 318 315 319 divne0d φrr0rT30
353 351 337 352 div2negd φrr0M9rT3=M9rT3
354 344 oveq2d φrr0M9rT3=M9rT3
355 350 353 354 3eqtr2d φrr0MrT3=M9rT3
356 344 355 oveq12d φrr0-rT3-MrT3=rT3M9rT3
357 336 339 356 3eqtrd φrr0rT+MrT3=rT3M9rT3
358 357 eqeq2d φrr0X+B3=rT+MrT3X+B3=rT3M9rT3
359 332 334 358 3bitrrd φrr0X+B3=rT3M9rT3X=B+rT+MrT3
360 359 anassrs φrr0X+B3=rT3M9rT3X=B+rT+MrT3
361 306 360 sylan2 φrr3=1X+B3=rT3M9rT3X=B+rT+MrT3
362 361 pm5.32da φrr3=1X+B3=rT3M9rT3r3=1X=B+rT+MrT3
363 362 rexbidva φrr3=1X+B3=rT3M9rT3rr3=1X=B+rT+MrT3
364 163 298 363 3bitr3d φX3+BX2+CX+D=0rr3=1X=B+rT+MrT3