Metamath Proof Explorer


Theorem metrest

Description: Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009) (Proof shortened by Mario Carneiro, 5-Jan-2014)

Ref Expression
Hypotheses metrest.1 D=CY×Y
metrest.3 J=MetOpenC
metrest.4 K=MetOpenD
Assertion metrest C∞MetXYXJ𝑡Y=K

Proof

Step Hyp Ref Expression
1 metrest.1 D=CY×Y
2 metrest.3 J=MetOpenC
3 metrest.4 K=MetOpenD
4 inss1 uYu
5 2 elmopn2 C∞MetXuJuXyur+yballCru
6 5 simplbda C∞MetXuJyur+yballCru
7 6 adantlr C∞MetXYXuJyur+yballCru
8 ssralv uYuyur+yballCruyuYr+yballCru
9 4 7 8 mpsyl C∞MetXYXuJyuYr+yballCru
10 ssrin yballCruyballCrYuY
11 10 reximi r+yballCrur+yballCrYuY
12 11 ralimi yuYr+yballCruyuYr+yballCrYuY
13 9 12 syl C∞MetXYXuJyuYr+yballCrYuY
14 inss2 uYY
15 13 14 jctil C∞MetXYXuJuYYyuYr+yballCrYuY
16 sseq1 x=uYxYuYY
17 sseq2 x=uYyballCrYxyballCrYuY
18 17 rexbidv x=uYr+yballCrYxr+yballCrYuY
19 18 raleqbi1dv x=uYyxr+yballCrYxyuYr+yballCrYuY
20 16 19 anbi12d x=uYxYyxr+yballCrYxuYYyuYr+yballCrYuY
21 15 20 syl5ibrcom C∞MetXYXuJx=uYxYyxr+yballCrYx
22 21 rexlimdva C∞MetXYXuJx=uYxYyxr+yballCrYx
23 2 mopntop C∞MetXJTop
24 23 ad2antrr C∞MetXYXxYyxr+yballCrYxJTop
25 ssel2 xYyxyY
26 ssel2 YXyYyX
27 rpxr r+r*
28 2 blopn C∞MetXyXr*yballCrJ
29 eleq1a yballCrJz=yballCrzJ
30 28 29 syl C∞MetXyXr*z=yballCrzJ
31 30 3expa C∞MetXyXr*z=yballCrzJ
32 27 31 sylan2 C∞MetXyXr+z=yballCrzJ
33 32 rexlimdva C∞MetXyXr+z=yballCrzJ
34 26 33 sylan2 C∞MetXYXyYr+z=yballCrzJ
35 34 anassrs C∞MetXYXyYr+z=yballCrzJ
36 25 35 sylan2 C∞MetXYXxYyxr+z=yballCrzJ
37 36 anassrs C∞MetXYXxYyxr+z=yballCrzJ
38 37 rexlimdva C∞MetXYXxYyxr+z=yballCrzJ
39 38 adantrd C∞MetXYXxYyxr+z=yballCrzYxzJ
40 39 adantrr C∞MetXYXxYyxr+yballCrYxyxr+z=yballCrzYxzJ
41 40 abssdv C∞MetXYXxYyxr+yballCrYxz|yxr+z=yballCrzYxJ
42 uniopn JTopz|yxr+z=yballCrzYxJz|yxr+z=yballCrzYxJ
43 24 41 42 syl2anc C∞MetXYXxYyxr+yballCrYxz|yxr+z=yballCrzYxJ
44 oveq1 y=uyballCr=uballCr
45 44 ineq1d y=uyballCrY=uballCrY
46 45 sseq1d y=uyballCrYxuballCrYx
47 46 rexbidv y=ur+yballCrYxr+uballCrYx
48 47 rspccv yxr+yballCrYxuxr+uballCrYx
49 48 ad2antll C∞MetXYXxYyxr+yballCrYxuxr+uballCrYx
50 ssel xYuxuY
51 ssel YXuYuX
52 blcntr C∞MetXuXr+uuballCr
53 52 a1d C∞MetXuXr+uballCrYxuuballCr
54 53 ancld C∞MetXuXr+uballCrYxuballCrYxuuballCr
55 54 3expa C∞MetXuXr+uballCrYxuballCrYxuuballCr
56 55 reximdva C∞MetXuXr+uballCrYxr+uballCrYxuuballCr
57 56 ex C∞MetXuXr+uballCrYxr+uballCrYxuuballCr
58 51 57 sylan9r C∞MetXYXuYr+uballCrYxr+uballCrYxuuballCr
59 50 58 sylan9r C∞MetXYXxYuxr+uballCrYxr+uballCrYxuuballCr
60 59 adantrr C∞MetXYXxYyxr+yballCrYxuxr+uballCrYxr+uballCrYxuuballCr
61 49 60 mpdd C∞MetXYXxYyxr+yballCrYxuxr+uballCrYxuuballCr
62 44 eleq2d y=uuyballCruuballCr
63 46 62 anbi12d y=uyballCrYxuyballCruballCrYxuuballCr
64 63 rexbidv y=ur+yballCrYxuyballCrr+uballCrYxuuballCr
65 64 rspcev uxr+uballCrYxuuballCryxr+yballCrYxuyballCr
66 65 ex uxr+uballCrYxuuballCryxr+yballCrYxuyballCr
67 61 66 sylcom C∞MetXYXxYyxr+yballCrYxuxyxr+yballCrYxuyballCr
68 simprl C∞MetXYXxYyxr+yballCrYxxY
69 68 sseld C∞MetXYXxYyxr+yballCrYxuxuY
70 67 69 jcad C∞MetXYXxYyxr+yballCrYxuxyxr+yballCrYxuyballCruY
71 elin uyballCrYuyballCruY
72 ssel2 yballCrYxuyballCrYux
73 71 72 sylan2br yballCrYxuyballCruYux
74 73 expr yballCrYxuyballCruYux
75 74 rexlimivw r+yballCrYxuyballCruYux
76 75 rexlimivw yxr+yballCrYxuyballCruYux
77 76 imp yxr+yballCrYxuyballCruYux
78 70 77 impbid1 C∞MetXYXxYyxr+yballCrYxuxyxr+yballCrYxuyballCruY
79 elin uz|yxr+z=yballCrzYxYuz|yxr+z=yballCrzYxuY
80 eluniab uz|yxr+z=yballCrzYxzuzyxr+z=yballCrzYx
81 ancom uzyxr+z=yballCrzYxyxr+z=yballCrzYxuz
82 anass yxr+z=yballCrzYxuzyxr+z=yballCrzYxuz
83 r19.41v r+z=yballCrzYxuzr+z=yballCrzYxuz
84 83 rexbii yxr+z=yballCrzYxuzyxr+z=yballCrzYxuz
85 r19.41v yxr+z=yballCrzYxuzyxr+z=yballCrzYxuz
86 84 85 bitr2i yxr+z=yballCrzYxuzyxr+z=yballCrzYxuz
87 81 82 86 3bitri uzyxr+z=yballCrzYxyxr+z=yballCrzYxuz
88 87 exbii zuzyxr+z=yballCrzYxzyxr+z=yballCrzYxuz
89 ovex yballCrV
90 ineq1 z=yballCrzY=yballCrY
91 90 sseq1d z=yballCrzYxyballCrYx
92 eleq2 z=yballCruzuyballCr
93 91 92 anbi12d z=yballCrzYxuzyballCrYxuyballCr
94 89 93 ceqsexv zz=yballCrzYxuzyballCrYxuyballCr
95 94 rexbii r+zz=yballCrzYxuzr+yballCrYxuyballCr
96 rexcom4 r+zz=yballCrzYxuzzr+z=yballCrzYxuz
97 95 96 bitr3i r+yballCrYxuyballCrzr+z=yballCrzYxuz
98 97 rexbii yxr+yballCrYxuyballCryxzr+z=yballCrzYxuz
99 rexcom4 yxzr+z=yballCrzYxuzzyxr+z=yballCrzYxuz
100 98 99 bitr2i zyxr+z=yballCrzYxuzyxr+yballCrYxuyballCr
101 80 88 100 3bitri uz|yxr+z=yballCrzYxyxr+yballCrYxuyballCr
102 101 anbi1i uz|yxr+z=yballCrzYxuYyxr+yballCrYxuyballCruY
103 79 102 bitr2i yxr+yballCrYxuyballCruYuz|yxr+z=yballCrzYxY
104 78 103 bitrdi C∞MetXYXxYyxr+yballCrYxuxuz|yxr+z=yballCrzYxY
105 104 eqrdv C∞MetXYXxYyxr+yballCrYxx=z|yxr+z=yballCrzYxY
106 ineq1 u=z|yxr+z=yballCrzYxuY=z|yxr+z=yballCrzYxY
107 106 rspceeqv z|yxr+z=yballCrzYxJx=z|yxr+z=yballCrzYxYuJx=uY
108 43 105 107 syl2anc C∞MetXYXxYyxr+yballCrYxuJx=uY
109 108 ex C∞MetXYXxYyxr+yballCrYxuJx=uY
110 22 109 impbid C∞MetXYXuJx=uYxYyxr+yballCrYx
111 simpr YXyYyY
112 26 111 elind YXyYyXY
113 1 blres C∞MetXyXYr*yballDr=yballCrY
114 113 sseq1d C∞MetXyXYr*yballDrxyballCrYx
115 114 3expa C∞MetXyXYr*yballDrxyballCrYx
116 27 115 sylan2 C∞MetXyXYr+yballDrxyballCrYx
117 116 rexbidva C∞MetXyXYr+yballDrxr+yballCrYx
118 112 117 sylan2 C∞MetXYXyYr+yballDrxr+yballCrYx
119 118 anassrs C∞MetXYXyYr+yballDrxr+yballCrYx
120 25 119 sylan2 C∞MetXYXxYyxr+yballDrxr+yballCrYx
121 120 anassrs C∞MetXYXxYyxr+yballDrxr+yballCrYx
122 121 ralbidva C∞MetXYXxYyxr+yballDrxyxr+yballCrYx
123 122 pm5.32da C∞MetXYXxYyxr+yballDrxxYyxr+yballCrYx
124 110 123 bitr4d C∞MetXYXuJx=uYxYyxr+yballDrx
125 id YXYX
126 2 mopnm C∞MetXXJ
127 ssexg YXXJYV
128 125 126 127 syl2anr C∞MetXYXYV
129 elrest JTopYVxJ𝑡YuJx=uY
130 23 128 129 syl2an2r C∞MetXYXxJ𝑡YuJx=uY
131 xmetres2 C∞MetXYXCY×Y∞MetY
132 1 131 eqeltrid C∞MetXYXD∞MetY
133 3 elmopn2 D∞MetYxKxYyxr+yballDrx
134 132 133 syl C∞MetXYXxKxYyxr+yballDrx
135 124 130 134 3bitr4d C∞MetXYXxJ𝑡YxK
136 135 eqrdv C∞MetXYXJ𝑡Y=K