Metamath Proof Explorer


Theorem minveclem3

Description: Lemma for minvec . The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
minvec.j J=TopOpenU
minvec.r R=ranyYNA-˙y
minvec.s S=supR<
minvec.d D=distUX×X
minvec.f F=ranr+yY|ADy2S2+r
Assertion minveclem3 φYfilGenFCauFilDY×Y

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 minvec.j J=TopOpenU
9 minvec.r R=ranyYNA-˙y
10 minvec.s S=supR<
11 minvec.d D=distUX×X
12 minvec.f F=ranr+yY|ADy2S2+r
13 simpr φs+s+
14 2z 2
15 rpexpcl s+2s2+
16 13 14 15 sylancl φs+s2+
17 16 rphalfcld φs+s22+
18 4nn 4
19 nnrp 44+
20 18 19 ax-mp 4+
21 rpdivcl s22+4+s224+
22 17 20 21 sylancl φs+s224+
23 5 adantr φs+YLSubSpU
24 rabexg YLSubSpUyY|ADy2S2+s224V
25 23 24 syl φs+yY|ADy2S2+s224V
26 eqid r+yY|ADy2S2+r=r+yY|ADy2S2+r
27 oveq2 r=s224S2+r=S2+s224
28 27 breq2d r=s224ADy2S2+rADy2S2+s224
29 28 rabbidv r=s224yY|ADy2S2+r=yY|ADy2S2+s224
30 26 29 elrnmpt1s s224+yY|ADy2S2+s224VyY|ADy2S2+s224ranr+yY|ADy2S2+r
31 22 25 30 syl2anc φs+yY|ADy2S2+s224ranr+yY|ADy2S2+r
32 31 12 eleqtrrdi φs+yY|ADy2S2+s224F
33 oveq2 y=uADy=ADu
34 33 oveq1d y=uADy2=ADu2
35 34 breq1d y=uADy2S2+s224ADu2S2+s224
36 35 elrab uyY|ADy2S2+s224uYADu2S2+s224
37 oveq2 y=vADy=ADv
38 37 oveq1d y=vADy2=ADv2
39 38 breq1d y=vADy2S2+s224ADv2S2+s224
40 39 elrab vyY|ADy2S2+s224vYADv2S2+s224
41 36 40 anbi12i uyY|ADy2S2+s224vyY|ADy2S2+s224uYADu2S2+s224vYADv2S2+s224
42 simprll φs+uYADu2S2+s224vYADv2S2+s224uY
43 simprrl φs+uYADu2S2+s224vYADv2S2+s224vY
44 42 43 ovresd φs+uYADu2S2+s224vYADv2S2+s224uDY×Yv=uDv
45 cphngp UCPreHilUNrmGrp
46 ngpms UNrmGrpUMetSp
47 1 11 msmet UMetSpDMetX
48 4 45 46 47 4syl φDMetX
49 48 ad2antrr φs+uYADu2S2+s224vYADv2S2+s224DMetX
50 eqid LSubSpU=LSubSpU
51 1 50 lssss YLSubSpUYX
52 5 51 syl φYX
53 52 ad2antrr φs+uYADu2S2+s224vYADv2S2+s224YX
54 53 42 sseldd φs+uYADu2S2+s224vYADv2S2+s224uX
55 53 43 sseldd φs+uYADu2S2+s224vYADv2S2+s224vX
56 metcl DMetXuXvXuDv
57 49 54 55 56 syl3anc φs+uYADu2S2+s224vYADv2S2+s224uDv
58 57 resqcld φs+uYADu2S2+s224vYADv2S2+s224uDv2
59 17 adantr φs+uYADu2S2+s224vYADv2S2+s224s22+
60 59 rpred φs+uYADu2S2+s224vYADv2S2+s224s22
61 16 adantr φs+uYADu2S2+s224vYADv2S2+s224s2+
62 61 rpred φs+uYADu2S2+s224vYADv2S2+s224s2
63 4 ad2antrr φs+uYADu2S2+s224vYADv2S2+s224UCPreHil
64 5 ad2antrr φs+uYADu2S2+s224vYADv2S2+s224YLSubSpU
65 6 ad2antrr φs+uYADu2S2+s224vYADv2S2+s224U𝑠YCMetSp
66 7 ad2antrr φs+uYADu2S2+s224vYADv2S2+s224AX
67 22 adantr φs+uYADu2S2+s224vYADv2S2+s224s224+
68 67 rpred φs+uYADu2S2+s224vYADv2S2+s224s224
69 67 rpge0d φs+uYADu2S2+s224vYADv2S2+s2240s224
70 simprlr φs+uYADu2S2+s224vYADv2S2+s224ADu2S2+s224
71 simprrr φs+uYADu2S2+s224vYADv2S2+s224ADv2S2+s224
72 1 2 3 63 64 65 66 8 9 10 11 68 69 42 43 70 71 minveclem2 φs+uYADu2S2+s224vYADv2S2+s224uDv24s224
73 59 rpcnd φs+uYADu2S2+s224vYADv2S2+s224s22
74 4cn 4
75 74 a1i φs+uYADu2S2+s224vYADv2S2+s2244
76 4ne0 40
77 76 a1i φs+uYADu2S2+s224vYADv2S2+s22440
78 73 75 77 divcan2d φs+uYADu2S2+s224vYADv2S2+s2244s224=s22
79 72 78 breqtrd φs+uYADu2S2+s224vYADv2S2+s224uDv2s22
80 rphalflt s2+s22<s2
81 61 80 syl φs+uYADu2S2+s224vYADv2S2+s224s22<s2
82 58 60 62 79 81 lelttrd φs+uYADu2S2+s224vYADv2S2+s224uDv2<s2
83 rpre s+s
84 83 ad2antlr φs+uYADu2S2+s224vYADv2S2+s224s
85 metge0 DMetXuXvX0uDv
86 49 54 55 85 syl3anc φs+uYADu2S2+s224vYADv2S2+s2240uDv
87 rpge0 s+0s
88 87 ad2antlr φs+uYADu2S2+s224vYADv2S2+s2240s
89 57 84 86 88 lt2sqd φs+uYADu2S2+s224vYADv2S2+s224uDv<suDv2<s2
90 82 89 mpbird φs+uYADu2S2+s224vYADv2S2+s224uDv<s
91 44 90 eqbrtrd φs+uYADu2S2+s224vYADv2S2+s224uDY×Yv<s
92 41 91 sylan2b φs+uyY|ADy2S2+s224vyY|ADy2S2+s224uDY×Yv<s
93 92 ralrimivva φs+uyY|ADy2S2+s224vyY|ADy2S2+s224uDY×Yv<s
94 raleq w=yY|ADy2S2+s224vwuDY×Yv<svyY|ADy2S2+s224uDY×Yv<s
95 94 raleqbi1dv w=yY|ADy2S2+s224uwvwuDY×Yv<suyY|ADy2S2+s224vyY|ADy2S2+s224uDY×Yv<s
96 95 rspcev yY|ADy2S2+s224FuyY|ADy2S2+s224vyY|ADy2S2+s224uDY×Yv<swFuwvwuDY×Yv<s
97 32 93 96 syl2anc φs+wFuwvwuDY×Yv<s
98 97 ralrimiva φs+wFuwvwuDY×Yv<s
99 1 2 3 4 5 6 7 8 9 10 11 minveclem3a φDY×YCMetY
100 cmetmet DY×YCMetYDY×YMetY
101 metxmet DY×YMetYDY×Y∞MetY
102 99 100 101 3syl φDY×Y∞MetY
103 1 2 3 4 5 6 7 8 9 10 11 12 minveclem3b φFfBasY
104 fgcfil DY×Y∞MetYFfBasYYfilGenFCauFilDY×Ys+wFuwvwuDY×Yv<s
105 102 103 104 syl2anc φYfilGenFCauFilDY×Ys+wFuwvwuDY×Yv<s
106 98 105 mpbird φYfilGenFCauFilDY×Y