Metamath Proof Explorer


Theorem monmatcollpw

Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid (but requires R to be commutative!). (Contributed by AV, 11-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses monmatcollpw.p P=Poly1R
monmatcollpw.c C=NMatP
monmatcollpw.a A=NMatR
monmatcollpw.k K=BaseA
monmatcollpw.0 0˙=0A
monmatcollpw.e ×˙=mulGrpP
monmatcollpw.x X=var1R
monmatcollpw.m ·˙=C
monmatcollpw.t T=NmatToPolyMatR
Assertion monmatcollpw NFinRCRingMKL0I0L×˙X·˙TMdecompPMatI=ifI=LM0˙

Proof

Step Hyp Ref Expression
1 monmatcollpw.p P=Poly1R
2 monmatcollpw.c C=NMatP
3 monmatcollpw.a A=NMatR
4 monmatcollpw.k K=BaseA
5 monmatcollpw.0 0˙=0A
6 monmatcollpw.e ×˙=mulGrpP
7 monmatcollpw.x X=var1R
8 monmatcollpw.m ·˙=C
9 monmatcollpw.t T=NmatToPolyMatR
10 simpll NFinRCRingMKL0I0NFin
11 crngring RCRingRRing
12 1 ply1ring RRingPRing
13 11 12 syl RCRingPRing
14 13 ad2antlr NFinRCRingMKL0I0PRing
15 11 adantl NFinRCRingRRing
16 simp2 MKL0I0L0
17 eqid mulGrpP=mulGrpP
18 eqid BaseP=BaseP
19 1 7 17 6 18 ply1moncl RRingL0L×˙XBaseP
20 15 16 19 syl2an NFinRCRingMKL0I0L×˙XBaseP
21 11 anim2i NFinRCRingNFinRRing
22 simp1 MKL0I0MK
23 21 22 anim12i NFinRCRingMKL0I0NFinRRingMK
24 df-3an NFinRRingMKNFinRRingMK
25 23 24 sylibr NFinRCRingMKL0I0NFinRRingMK
26 9 3 4 1 2 mat2pmatbas NFinRRingMKTMBaseC
27 25 26 syl NFinRCRingMKL0I0TMBaseC
28 20 27 jca NFinRCRingMKL0I0L×˙XBasePTMBaseC
29 eqid BaseC=BaseC
30 18 2 29 8 matvscl NFinPRingL×˙XBasePTMBaseCL×˙X·˙TMBaseC
31 10 14 28 30 syl21anc NFinRCRingMKL0I0L×˙X·˙TMBaseC
32 simpr3 NFinRCRingMKL0I0I0
33 2 29 decpmatval L×˙X·˙TMBaseCI0L×˙X·˙TMdecompPMatI=iN,jNcoe1iL×˙X·˙TMjI
34 31 32 33 syl2anc NFinRCRingMKL0I0L×˙X·˙TMdecompPMatI=iN,jNcoe1iL×˙X·˙TMjI
35 14 3ad2ant1 NFinRCRingMKL0I0iNjNPRing
36 28 3ad2ant1 NFinRCRingMKL0I0iNjNL×˙XBasePTMBaseC
37 3simpc NFinRCRingMKL0I0iNjNiNjN
38 eqid P=P
39 2 29 18 8 38 matvscacell PRingL×˙XBasePTMBaseCiNjNiL×˙X·˙TMj=L×˙XPiTMj
40 35 36 37 39 syl3anc NFinRCRingMKL0I0iNjNiL×˙X·˙TMj=L×˙XPiTMj
41 40 fveq2d NFinRCRingMKL0I0iNjNcoe1iL×˙X·˙TMj=coe1L×˙XPiTMj
42 41 fveq1d NFinRCRingMKL0I0iNjNcoe1iL×˙X·˙TMjI=coe1L×˙XPiTMjI
43 22 anim2i NFinRCRingMKL0I0NFinRCRingMK
44 df-3an NFinRCRingMKNFinRCRingMK
45 43 44 sylibr NFinRCRingMKL0I0NFinRCRingMK
46 45 3ad2ant1 NFinRCRingMKL0I0iNjNNFinRCRingMK
47 eqid algScP=algScP
48 9 3 4 1 47 mat2pmatvalel NFinRCRingMKiNjNiTMj=algScPiMj
49 46 37 48 syl2anc NFinRCRingMKL0I0iNjNiTMj=algScPiMj
50 49 oveq2d NFinRCRingMKL0I0iNjNL×˙XPiTMj=L×˙XPalgScPiMj
51 1 ply1assa RCRingPAssAlg
52 51 ad2antlr NFinRCRingMKL0I0PAssAlg
53 52 3ad2ant1 NFinRCRingMKL0I0iNjNPAssAlg
54 eqid BaseR=BaseR
55 eqid BaseA=BaseA
56 simp2 NFinRCRingMKL0I0iNjNiN
57 simp3 NFinRCRingMKL0I0iNjNjN
58 4 eleq2i MKMBaseA
59 58 biimpi MKMBaseA
60 59 3ad2ant1 MKL0I0MBaseA
61 60 adantl NFinRCRingMKL0I0MBaseA
62 61 3ad2ant1 NFinRCRingMKL0I0iNjNMBaseA
63 3 54 55 56 57 62 matecld NFinRCRingMKL0I0iNjNiMjBaseR
64 1 ply1sca RCRingR=ScalarP
65 64 adantl NFinRCRingR=ScalarP
66 65 eqcomd NFinRCRingScalarP=R
67 66 fveq2d NFinRCRingBaseScalarP=BaseR
68 67 adantr NFinRCRingMKL0I0BaseScalarP=BaseR
69 68 3ad2ant1 NFinRCRingMKL0I0iNjNBaseScalarP=BaseR
70 63 69 eleqtrrd NFinRCRingMKL0I0iNjNiMjBaseScalarP
71 20 3ad2ant1 NFinRCRingMKL0I0iNjNL×˙XBaseP
72 eqid ScalarP=ScalarP
73 eqid BaseScalarP=BaseScalarP
74 eqid P=P
75 47 72 73 18 38 74 asclmul2 PAssAlgiMjBaseScalarPL×˙XBasePL×˙XPalgScPiMj=iMjPL×˙X
76 53 70 71 75 syl3anc NFinRCRingMKL0I0iNjNL×˙XPalgScPiMj=iMjPL×˙X
77 50 76 eqtrd NFinRCRingMKL0I0iNjNL×˙XPiTMj=iMjPL×˙X
78 77 fveq2d NFinRCRingMKL0I0iNjNcoe1L×˙XPiTMj=coe1iMjPL×˙X
79 78 fveq1d NFinRCRingMKL0I0iNjNcoe1L×˙XPiTMjI=coe1iMjPL×˙XI
80 11 ad2antlr NFinRCRingMKL0I0RRing
81 80 3ad2ant1 NFinRCRingMKL0I0iNjNRRing
82 simp1r2 NFinRCRingMKL0I0iNjNL0
83 eqid 0R=0R
84 83 54 1 7 74 17 6 coe1tm RRingiMjBaseRL0coe1iMjPL×˙X=l0ifl=LiMj0R
85 81 63 82 84 syl3anc NFinRCRingMKL0I0iNjNcoe1iMjPL×˙X=l0ifl=LiMj0R
86 85 fveq1d NFinRCRingMKL0I0iNjNcoe1iMjPL×˙XI=l0ifl=LiMj0RI
87 42 79 86 3eqtrd NFinRCRingMKL0I0iNjNcoe1iL×˙X·˙TMjI=l0ifl=LiMj0RI
88 87 mpoeq3dva NFinRCRingMKL0I0iN,jNcoe1iL×˙X·˙TMjI=iN,jNl0ifl=LiMj0RI
89 21 adantr NFinRCRingMKL0I0NFinRRing
90 89 adantr NFinRCRingMKL0I0xNyNNFinRRing
91 3 83 mat0op NFinRRing0A=zN,wN0R
92 90 91 syl NFinRCRingMKL0I0xNyN0A=zN,wN0R
93 5 92 eqtrid NFinRCRingMKL0I0xNyN0˙=zN,wN0R
94 eqidd NFinRCRingMKL0I0xNyNz=xw=y0R=0R
95 simprl NFinRCRingMKL0I0xNyNxN
96 simprr NFinRCRingMKL0I0xNyNyN
97 fvexd NFinRCRingMKL0I0xNyN0RV
98 93 94 95 96 97 ovmpod NFinRCRingMKL0I0xNyNx0˙y=0R
99 98 eqcomd NFinRCRingMKL0I0xNyN0R=x0˙y
100 99 ifeq2d NFinRCRingMKL0I0xNyNifI=LxMy0R=ifI=LxMyx0˙y
101 eqidd NFinRCRingMKL0I0xNyNiN,jNl0ifl=LiMj0RI=iN,jNl0ifl=LiMj0RI
102 oveq12 i=xj=yiMj=xMy
103 102 ifeq1d i=xj=yifl=LiMj0R=ifl=LxMy0R
104 103 mpteq2dv i=xj=yl0ifl=LiMj0R=l0ifl=LxMy0R
105 104 fveq1d i=xj=yl0ifl=LiMj0RI=l0ifl=LxMy0RI
106 eqidd NFinRCRingMKL0I0xNyNl0ifl=LxMy0R=l0ifl=LxMy0R
107 eqeq1 l=Il=LI=L
108 107 ifbid l=Iifl=LxMy0R=ifI=LxMy0R
109 108 adantl NFinRCRingMKL0I0xNyNl=Iifl=LxMy0R=ifI=LxMy0R
110 32 adantr NFinRCRingMKL0I0xNyNI0
111 ovex xMyV
112 fvex 0RV
113 111 112 ifex ifI=LxMy0RV
114 113 a1i NFinRCRingMKL0I0xNyNifI=LxMy0RV
115 106 109 110 114 fvmptd NFinRCRingMKL0I0xNyNl0ifl=LxMy0RI=ifI=LxMy0R
116 105 115 sylan9eqr NFinRCRingMKL0I0xNyNi=xj=yl0ifl=LiMj0RI=ifI=LxMy0R
117 101 116 95 96 114 ovmpod NFinRCRingMKL0I0xNyNxiN,jNl0ifl=LiMj0RIy=ifI=LxMy0R
118 ifov xifI=LM0˙y=ifI=LxMyx0˙y
119 118 a1i NFinRCRingMKL0I0xNyNxifI=LM0˙y=ifI=LxMyx0˙y
120 100 117 119 3eqtr4d NFinRCRingMKL0I0xNyNxiN,jNl0ifl=LiMj0RIy=xifI=LM0˙y
121 120 ralrimivva NFinRCRingMKL0I0xNyNxiN,jNl0ifl=LiMj0RIy=xifI=LM0˙y
122 simplr NFinRCRingMKL0I0RCRing
123 eqidd NFinRCRingMKL0I0iNjNl0ifl=LiMj0R=l0ifl=LiMj0R
124 107 ifbid l=Iifl=LiMj0R=ifI=LiMj0R
125 124 adantl NFinRCRingMKL0I0iNjNl=Iifl=LiMj0R=ifI=LiMj0R
126 32 3ad2ant1 NFinRCRingMKL0I0iNjNI0
127 54 83 ring0cl RRing0RBaseR
128 15 127 syl NFinRCRing0RBaseR
129 128 adantr NFinRCRingMKL0I00RBaseR
130 129 3ad2ant1 NFinRCRingMKL0I0iNjN0RBaseR
131 63 130 ifcld NFinRCRingMKL0I0iNjNifI=LiMj0RBaseR
132 123 125 126 131 fvmptd NFinRCRingMKL0I0iNjNl0ifl=LiMj0RI=ifI=LiMj0R
133 132 131 eqeltrd NFinRCRingMKL0I0iNjNl0ifl=LiMj0RIBaseR
134 3 54 4 10 122 133 matbas2d NFinRCRingMKL0I0iN,jNl0ifl=LiMj0RIK
135 61 58 sylibr NFinRCRingMKL0I0MK
136 3 matring NFinRRingARing
137 4 5 ring0cl ARing0˙K
138 21 136 137 3syl NFinRCRing0˙K
139 138 adantr NFinRCRingMKL0I00˙K
140 135 139 ifcld NFinRCRingMKL0I0ifI=LM0˙K
141 3 4 eqmat iN,jNl0ifl=LiMj0RIKifI=LM0˙KiN,jNl0ifl=LiMj0RI=ifI=LM0˙xNyNxiN,jNl0ifl=LiMj0RIy=xifI=LM0˙y
142 134 140 141 syl2anc NFinRCRingMKL0I0iN,jNl0ifl=LiMj0RI=ifI=LM0˙xNyNxiN,jNl0ifl=LiMj0RIy=xifI=LM0˙y
143 121 142 mpbird NFinRCRingMKL0I0iN,jNl0ifl=LiMj0RI=ifI=LM0˙
144 34 88 143 3eqtrd NFinRCRingMKL0I0L×˙X·˙TMdecompPMatI=ifI=LM0˙