Step |
Hyp |
Ref |
Expression |
1 |
|
monmatcollpw.p |
|
2 |
|
monmatcollpw.c |
|
3 |
|
monmatcollpw.a |
|
4 |
|
monmatcollpw.k |
|
5 |
|
monmatcollpw.0 |
|
6 |
|
monmatcollpw.e |
|
7 |
|
monmatcollpw.x |
|
8 |
|
monmatcollpw.m |
|
9 |
|
monmatcollpw.t |
|
10 |
|
simpll |
|
11 |
|
crngring |
|
12 |
1
|
ply1ring |
|
13 |
11 12
|
syl |
|
14 |
13
|
ad2antlr |
|
15 |
11
|
adantl |
|
16 |
|
simp2 |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
1 7 17 6 18
|
ply1moncl |
|
20 |
15 16 19
|
syl2an |
|
21 |
11
|
anim2i |
|
22 |
|
simp1 |
|
23 |
21 22
|
anim12i |
|
24 |
|
df-3an |
|
25 |
23 24
|
sylibr |
|
26 |
9 3 4 1 2
|
mat2pmatbas |
|
27 |
25 26
|
syl |
|
28 |
20 27
|
jca |
|
29 |
|
eqid |
|
30 |
18 2 29 8
|
matvscl |
|
31 |
10 14 28 30
|
syl21anc |
|
32 |
|
simpr3 |
|
33 |
2 29
|
decpmatval |
|
34 |
31 32 33
|
syl2anc |
|
35 |
14
|
3ad2ant1 |
|
36 |
28
|
3ad2ant1 |
|
37 |
|
3simpc |
|
38 |
|
eqid |
|
39 |
2 29 18 8 38
|
matvscacell |
|
40 |
35 36 37 39
|
syl3anc |
|
41 |
40
|
fveq2d |
|
42 |
41
|
fveq1d |
|
43 |
22
|
anim2i |
|
44 |
|
df-3an |
|
45 |
43 44
|
sylibr |
|
46 |
45
|
3ad2ant1 |
|
47 |
|
eqid |
|
48 |
9 3 4 1 47
|
mat2pmatvalel |
|
49 |
46 37 48
|
syl2anc |
|
50 |
49
|
oveq2d |
|
51 |
1
|
ply1assa |
|
52 |
51
|
ad2antlr |
|
53 |
52
|
3ad2ant1 |
|
54 |
|
eqid |
|
55 |
|
eqid |
|
56 |
|
simp2 |
|
57 |
|
simp3 |
|
58 |
4
|
eleq2i |
|
59 |
58
|
biimpi |
|
60 |
59
|
3ad2ant1 |
|
61 |
60
|
adantl |
|
62 |
61
|
3ad2ant1 |
|
63 |
3 54 55 56 57 62
|
matecld |
|
64 |
1
|
ply1sca |
|
65 |
64
|
adantl |
|
66 |
65
|
eqcomd |
|
67 |
66
|
fveq2d |
|
68 |
67
|
adantr |
|
69 |
68
|
3ad2ant1 |
|
70 |
63 69
|
eleqtrrd |
|
71 |
20
|
3ad2ant1 |
|
72 |
|
eqid |
|
73 |
|
eqid |
|
74 |
|
eqid |
|
75 |
47 72 73 18 38 74
|
asclmul2 |
|
76 |
53 70 71 75
|
syl3anc |
|
77 |
50 76
|
eqtrd |
|
78 |
77
|
fveq2d |
|
79 |
78
|
fveq1d |
|
80 |
11
|
ad2antlr |
|
81 |
80
|
3ad2ant1 |
|
82 |
|
simp1r2 |
|
83 |
|
eqid |
|
84 |
83 54 1 7 74 17 6
|
coe1tm |
|
85 |
81 63 82 84
|
syl3anc |
|
86 |
85
|
fveq1d |
|
87 |
42 79 86
|
3eqtrd |
|
88 |
87
|
mpoeq3dva |
|
89 |
21
|
adantr |
|
90 |
89
|
adantr |
|
91 |
3 83
|
mat0op |
|
92 |
90 91
|
syl |
|
93 |
5 92
|
eqtrid |
|
94 |
|
eqidd |
|
95 |
|
simprl |
|
96 |
|
simprr |
|
97 |
|
fvexd |
|
98 |
93 94 95 96 97
|
ovmpod |
|
99 |
98
|
eqcomd |
|
100 |
99
|
ifeq2d |
|
101 |
|
eqidd |
|
102 |
|
oveq12 |
|
103 |
102
|
ifeq1d |
|
104 |
103
|
mpteq2dv |
|
105 |
104
|
fveq1d |
|
106 |
|
eqidd |
|
107 |
|
eqeq1 |
|
108 |
107
|
ifbid |
|
109 |
108
|
adantl |
|
110 |
32
|
adantr |
|
111 |
|
ovex |
|
112 |
|
fvex |
|
113 |
111 112
|
ifex |
|
114 |
113
|
a1i |
|
115 |
106 109 110 114
|
fvmptd |
|
116 |
105 115
|
sylan9eqr |
|
117 |
101 116 95 96 114
|
ovmpod |
|
118 |
|
ifov |
|
119 |
118
|
a1i |
|
120 |
100 117 119
|
3eqtr4d |
|
121 |
120
|
ralrimivva |
|
122 |
|
simplr |
|
123 |
|
eqidd |
|
124 |
107
|
ifbid |
|
125 |
124
|
adantl |
|
126 |
32
|
3ad2ant1 |
|
127 |
54 83
|
ring0cl |
|
128 |
15 127
|
syl |
|
129 |
128
|
adantr |
|
130 |
129
|
3ad2ant1 |
|
131 |
63 130
|
ifcld |
|
132 |
123 125 126 131
|
fvmptd |
|
133 |
132 131
|
eqeltrd |
|
134 |
3 54 4 10 122 133
|
matbas2d |
|
135 |
61 58
|
sylibr |
|
136 |
3
|
matring |
|
137 |
4 5
|
ring0cl |
|
138 |
21 136 137
|
3syl |
|
139 |
138
|
adantr |
|
140 |
135 139
|
ifcld |
|
141 |
3 4
|
eqmat |
|
142 |
134 140 141
|
syl2anc |
|
143 |
121 142
|
mpbird |
|
144 |
34 88 143
|
3eqtrd |
|