| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monmatcollpw.p |
|
| 2 |
|
monmatcollpw.c |
|
| 3 |
|
monmatcollpw.a |
|
| 4 |
|
monmatcollpw.k |
|
| 5 |
|
monmatcollpw.0 |
|
| 6 |
|
monmatcollpw.e |
|
| 7 |
|
monmatcollpw.x |
|
| 8 |
|
monmatcollpw.m |
|
| 9 |
|
monmatcollpw.t |
|
| 10 |
|
simpll |
|
| 11 |
|
crngring |
|
| 12 |
1
|
ply1ring |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
11
|
adantl |
|
| 16 |
|
simp2 |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
1 7 17 6 18
|
ply1moncl |
|
| 20 |
15 16 19
|
syl2an |
|
| 21 |
11
|
anim2i |
|
| 22 |
|
simp1 |
|
| 23 |
21 22
|
anim12i |
|
| 24 |
|
df-3an |
|
| 25 |
23 24
|
sylibr |
|
| 26 |
9 3 4 1 2
|
mat2pmatbas |
|
| 27 |
25 26
|
syl |
|
| 28 |
20 27
|
jca |
|
| 29 |
|
eqid |
|
| 30 |
18 2 29 8
|
matvscl |
|
| 31 |
10 14 28 30
|
syl21anc |
|
| 32 |
|
simpr3 |
|
| 33 |
2 29
|
decpmatval |
|
| 34 |
31 32 33
|
syl2anc |
|
| 35 |
14
|
3ad2ant1 |
|
| 36 |
28
|
3ad2ant1 |
|
| 37 |
|
3simpc |
|
| 38 |
|
eqid |
|
| 39 |
2 29 18 8 38
|
matvscacell |
|
| 40 |
35 36 37 39
|
syl3anc |
|
| 41 |
40
|
fveq2d |
|
| 42 |
41
|
fveq1d |
|
| 43 |
22
|
anim2i |
|
| 44 |
|
df-3an |
|
| 45 |
43 44
|
sylibr |
|
| 46 |
45
|
3ad2ant1 |
|
| 47 |
|
eqid |
|
| 48 |
9 3 4 1 47
|
mat2pmatvalel |
|
| 49 |
46 37 48
|
syl2anc |
|
| 50 |
49
|
oveq2d |
|
| 51 |
1
|
ply1assa |
|
| 52 |
51
|
ad2antlr |
|
| 53 |
52
|
3ad2ant1 |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
|
simp2 |
|
| 57 |
|
simp3 |
|
| 58 |
4
|
eleq2i |
|
| 59 |
58
|
biimpi |
|
| 60 |
59
|
3ad2ant1 |
|
| 61 |
60
|
adantl |
|
| 62 |
61
|
3ad2ant1 |
|
| 63 |
3 54 55 56 57 62
|
matecld |
|
| 64 |
1
|
ply1sca |
|
| 65 |
64
|
adantl |
|
| 66 |
65
|
eqcomd |
|
| 67 |
66
|
fveq2d |
|
| 68 |
67
|
adantr |
|
| 69 |
68
|
3ad2ant1 |
|
| 70 |
63 69
|
eleqtrrd |
|
| 71 |
20
|
3ad2ant1 |
|
| 72 |
|
eqid |
|
| 73 |
|
eqid |
|
| 74 |
|
eqid |
|
| 75 |
47 72 73 18 38 74
|
asclmul2 |
|
| 76 |
53 70 71 75
|
syl3anc |
|
| 77 |
50 76
|
eqtrd |
|
| 78 |
77
|
fveq2d |
|
| 79 |
78
|
fveq1d |
|
| 80 |
11
|
ad2antlr |
|
| 81 |
80
|
3ad2ant1 |
|
| 82 |
|
simp1r2 |
|
| 83 |
|
eqid |
|
| 84 |
83 54 1 7 74 17 6
|
coe1tm |
|
| 85 |
81 63 82 84
|
syl3anc |
|
| 86 |
85
|
fveq1d |
|
| 87 |
42 79 86
|
3eqtrd |
|
| 88 |
87
|
mpoeq3dva |
|
| 89 |
21
|
adantr |
|
| 90 |
89
|
adantr |
|
| 91 |
3 83
|
mat0op |
|
| 92 |
90 91
|
syl |
|
| 93 |
5 92
|
eqtrid |
|
| 94 |
|
eqidd |
|
| 95 |
|
simprl |
|
| 96 |
|
simprr |
|
| 97 |
|
fvexd |
|
| 98 |
93 94 95 96 97
|
ovmpod |
|
| 99 |
98
|
eqcomd |
|
| 100 |
99
|
ifeq2d |
|
| 101 |
|
eqidd |
|
| 102 |
|
oveq12 |
|
| 103 |
102
|
ifeq1d |
|
| 104 |
103
|
mpteq2dv |
|
| 105 |
104
|
fveq1d |
|
| 106 |
|
eqidd |
|
| 107 |
|
eqeq1 |
|
| 108 |
107
|
ifbid |
|
| 109 |
108
|
adantl |
|
| 110 |
32
|
adantr |
|
| 111 |
|
ovex |
|
| 112 |
|
fvex |
|
| 113 |
111 112
|
ifex |
|
| 114 |
113
|
a1i |
|
| 115 |
106 109 110 114
|
fvmptd |
|
| 116 |
105 115
|
sylan9eqr |
|
| 117 |
101 116 95 96 114
|
ovmpod |
|
| 118 |
|
ifov |
|
| 119 |
118
|
a1i |
|
| 120 |
100 117 119
|
3eqtr4d |
|
| 121 |
120
|
ralrimivva |
|
| 122 |
|
simplr |
|
| 123 |
|
eqidd |
|
| 124 |
107
|
ifbid |
|
| 125 |
124
|
adantl |
|
| 126 |
32
|
3ad2ant1 |
|
| 127 |
54 83
|
ring0cl |
|
| 128 |
15 127
|
syl |
|
| 129 |
128
|
adantr |
|
| 130 |
129
|
3ad2ant1 |
|
| 131 |
63 130
|
ifcld |
|
| 132 |
123 125 126 131
|
fvmptd |
|
| 133 |
132 131
|
eqeltrd |
|
| 134 |
3 54 4 10 122 133
|
matbas2d |
|
| 135 |
61 58
|
sylibr |
|
| 136 |
3
|
matring |
|
| 137 |
4 5
|
ring0cl |
|
| 138 |
21 136 137
|
3syl |
|
| 139 |
138
|
adantr |
|
| 140 |
135 139
|
ifcld |
|
| 141 |
3 4
|
eqmat |
|
| 142 |
134 140 141
|
syl2anc |
|
| 143 |
121 142
|
mpbird |
|
| 144 |
34 88 143
|
3eqtrd |
|