Metamath Proof Explorer


Theorem monmatcollpw

Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid (but requires R to be commutative!). (Contributed by AV, 11-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses monmatcollpw.p P = Poly 1 R
monmatcollpw.c C = N Mat P
monmatcollpw.a A = N Mat R
monmatcollpw.k K = Base A
monmatcollpw.0 0 ˙ = 0 A
monmatcollpw.e × ˙ = mulGrp P
monmatcollpw.x X = var 1 R
monmatcollpw.m · ˙ = C
monmatcollpw.t T = N matToPolyMat R
Assertion monmatcollpw N Fin R CRing M K L 0 I 0 L × ˙ X · ˙ T M decompPMat I = if I = L M 0 ˙

Proof

Step Hyp Ref Expression
1 monmatcollpw.p P = Poly 1 R
2 monmatcollpw.c C = N Mat P
3 monmatcollpw.a A = N Mat R
4 monmatcollpw.k K = Base A
5 monmatcollpw.0 0 ˙ = 0 A
6 monmatcollpw.e × ˙ = mulGrp P
7 monmatcollpw.x X = var 1 R
8 monmatcollpw.m · ˙ = C
9 monmatcollpw.t T = N matToPolyMat R
10 simpll N Fin R CRing M K L 0 I 0 N Fin
11 crngring R CRing R Ring
12 1 ply1ring R Ring P Ring
13 11 12 syl R CRing P Ring
14 13 ad2antlr N Fin R CRing M K L 0 I 0 P Ring
15 11 adantl N Fin R CRing R Ring
16 simp2 M K L 0 I 0 L 0
17 eqid mulGrp P = mulGrp P
18 eqid Base P = Base P
19 1 7 17 6 18 ply1moncl R Ring L 0 L × ˙ X Base P
20 15 16 19 syl2an N Fin R CRing M K L 0 I 0 L × ˙ X Base P
21 11 anim2i N Fin R CRing N Fin R Ring
22 simp1 M K L 0 I 0 M K
23 21 22 anim12i N Fin R CRing M K L 0 I 0 N Fin R Ring M K
24 df-3an N Fin R Ring M K N Fin R Ring M K
25 23 24 sylibr N Fin R CRing M K L 0 I 0 N Fin R Ring M K
26 9 3 4 1 2 mat2pmatbas N Fin R Ring M K T M Base C
27 25 26 syl N Fin R CRing M K L 0 I 0 T M Base C
28 20 27 jca N Fin R CRing M K L 0 I 0 L × ˙ X Base P T M Base C
29 eqid Base C = Base C
30 18 2 29 8 matvscl N Fin P Ring L × ˙ X Base P T M Base C L × ˙ X · ˙ T M Base C
31 10 14 28 30 syl21anc N Fin R CRing M K L 0 I 0 L × ˙ X · ˙ T M Base C
32 simpr3 N Fin R CRing M K L 0 I 0 I 0
33 2 29 decpmatval L × ˙ X · ˙ T M Base C I 0 L × ˙ X · ˙ T M decompPMat I = i N , j N coe 1 i L × ˙ X · ˙ T M j I
34 31 32 33 syl2anc N Fin R CRing M K L 0 I 0 L × ˙ X · ˙ T M decompPMat I = i N , j N coe 1 i L × ˙ X · ˙ T M j I
35 14 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N P Ring
36 28 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N L × ˙ X Base P T M Base C
37 3simpc N Fin R CRing M K L 0 I 0 i N j N i N j N
38 eqid P = P
39 2 29 18 8 38 matvscacell P Ring L × ˙ X Base P T M Base C i N j N i L × ˙ X · ˙ T M j = L × ˙ X P i T M j
40 35 36 37 39 syl3anc N Fin R CRing M K L 0 I 0 i N j N i L × ˙ X · ˙ T M j = L × ˙ X P i T M j
41 40 fveq2d N Fin R CRing M K L 0 I 0 i N j N coe 1 i L × ˙ X · ˙ T M j = coe 1 L × ˙ X P i T M j
42 41 fveq1d N Fin R CRing M K L 0 I 0 i N j N coe 1 i L × ˙ X · ˙ T M j I = coe 1 L × ˙ X P i T M j I
43 22 anim2i N Fin R CRing M K L 0 I 0 N Fin R CRing M K
44 df-3an N Fin R CRing M K N Fin R CRing M K
45 43 44 sylibr N Fin R CRing M K L 0 I 0 N Fin R CRing M K
46 45 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N N Fin R CRing M K
47 eqid algSc P = algSc P
48 9 3 4 1 47 mat2pmatvalel N Fin R CRing M K i N j N i T M j = algSc P i M j
49 46 37 48 syl2anc N Fin R CRing M K L 0 I 0 i N j N i T M j = algSc P i M j
50 49 oveq2d N Fin R CRing M K L 0 I 0 i N j N L × ˙ X P i T M j = L × ˙ X P algSc P i M j
51 1 ply1assa R CRing P AssAlg
52 51 ad2antlr N Fin R CRing M K L 0 I 0 P AssAlg
53 52 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N P AssAlg
54 eqid Base R = Base R
55 eqid Base A = Base A
56 simp2 N Fin R CRing M K L 0 I 0 i N j N i N
57 simp3 N Fin R CRing M K L 0 I 0 i N j N j N
58 4 eleq2i M K M Base A
59 58 biimpi M K M Base A
60 59 3ad2ant1 M K L 0 I 0 M Base A
61 60 adantl N Fin R CRing M K L 0 I 0 M Base A
62 61 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N M Base A
63 3 54 55 56 57 62 matecld N Fin R CRing M K L 0 I 0 i N j N i M j Base R
64 1 ply1sca R CRing R = Scalar P
65 64 adantl N Fin R CRing R = Scalar P
66 65 eqcomd N Fin R CRing Scalar P = R
67 66 fveq2d N Fin R CRing Base Scalar P = Base R
68 67 adantr N Fin R CRing M K L 0 I 0 Base Scalar P = Base R
69 68 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N Base Scalar P = Base R
70 63 69 eleqtrrd N Fin R CRing M K L 0 I 0 i N j N i M j Base Scalar P
71 20 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N L × ˙ X Base P
72 eqid Scalar P = Scalar P
73 eqid Base Scalar P = Base Scalar P
74 eqid P = P
75 47 72 73 18 38 74 asclmul2 P AssAlg i M j Base Scalar P L × ˙ X Base P L × ˙ X P algSc P i M j = i M j P L × ˙ X
76 53 70 71 75 syl3anc N Fin R CRing M K L 0 I 0 i N j N L × ˙ X P algSc P i M j = i M j P L × ˙ X
77 50 76 eqtrd N Fin R CRing M K L 0 I 0 i N j N L × ˙ X P i T M j = i M j P L × ˙ X
78 77 fveq2d N Fin R CRing M K L 0 I 0 i N j N coe 1 L × ˙ X P i T M j = coe 1 i M j P L × ˙ X
79 78 fveq1d N Fin R CRing M K L 0 I 0 i N j N coe 1 L × ˙ X P i T M j I = coe 1 i M j P L × ˙ X I
80 11 ad2antlr N Fin R CRing M K L 0 I 0 R Ring
81 80 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N R Ring
82 simp1r2 N Fin R CRing M K L 0 I 0 i N j N L 0
83 eqid 0 R = 0 R
84 83 54 1 7 74 17 6 coe1tm R Ring i M j Base R L 0 coe 1 i M j P L × ˙ X = l 0 if l = L i M j 0 R
85 81 63 82 84 syl3anc N Fin R CRing M K L 0 I 0 i N j N coe 1 i M j P L × ˙ X = l 0 if l = L i M j 0 R
86 85 fveq1d N Fin R CRing M K L 0 I 0 i N j N coe 1 i M j P L × ˙ X I = l 0 if l = L i M j 0 R I
87 42 79 86 3eqtrd N Fin R CRing M K L 0 I 0 i N j N coe 1 i L × ˙ X · ˙ T M j I = l 0 if l = L i M j 0 R I
88 87 mpoeq3dva N Fin R CRing M K L 0 I 0 i N , j N coe 1 i L × ˙ X · ˙ T M j I = i N , j N l 0 if l = L i M j 0 R I
89 21 adantr N Fin R CRing M K L 0 I 0 N Fin R Ring
90 89 adantr N Fin R CRing M K L 0 I 0 x N y N N Fin R Ring
91 3 83 mat0op N Fin R Ring 0 A = z N , w N 0 R
92 90 91 syl N Fin R CRing M K L 0 I 0 x N y N 0 A = z N , w N 0 R
93 5 92 eqtrid N Fin R CRing M K L 0 I 0 x N y N 0 ˙ = z N , w N 0 R
94 eqidd N Fin R CRing M K L 0 I 0 x N y N z = x w = y 0 R = 0 R
95 simprl N Fin R CRing M K L 0 I 0 x N y N x N
96 simprr N Fin R CRing M K L 0 I 0 x N y N y N
97 fvexd N Fin R CRing M K L 0 I 0 x N y N 0 R V
98 93 94 95 96 97 ovmpod N Fin R CRing M K L 0 I 0 x N y N x 0 ˙ y = 0 R
99 98 eqcomd N Fin R CRing M K L 0 I 0 x N y N 0 R = x 0 ˙ y
100 99 ifeq2d N Fin R CRing M K L 0 I 0 x N y N if I = L x M y 0 R = if I = L x M y x 0 ˙ y
101 eqidd N Fin R CRing M K L 0 I 0 x N y N i N , j N l 0 if l = L i M j 0 R I = i N , j N l 0 if l = L i M j 0 R I
102 oveq12 i = x j = y i M j = x M y
103 102 ifeq1d i = x j = y if l = L i M j 0 R = if l = L x M y 0 R
104 103 mpteq2dv i = x j = y l 0 if l = L i M j 0 R = l 0 if l = L x M y 0 R
105 104 fveq1d i = x j = y l 0 if l = L i M j 0 R I = l 0 if l = L x M y 0 R I
106 eqidd N Fin R CRing M K L 0 I 0 x N y N l 0 if l = L x M y 0 R = l 0 if l = L x M y 0 R
107 eqeq1 l = I l = L I = L
108 107 ifbid l = I if l = L x M y 0 R = if I = L x M y 0 R
109 108 adantl N Fin R CRing M K L 0 I 0 x N y N l = I if l = L x M y 0 R = if I = L x M y 0 R
110 32 adantr N Fin R CRing M K L 0 I 0 x N y N I 0
111 ovex x M y V
112 fvex 0 R V
113 111 112 ifex if I = L x M y 0 R V
114 113 a1i N Fin R CRing M K L 0 I 0 x N y N if I = L x M y 0 R V
115 106 109 110 114 fvmptd N Fin R CRing M K L 0 I 0 x N y N l 0 if l = L x M y 0 R I = if I = L x M y 0 R
116 105 115 sylan9eqr N Fin R CRing M K L 0 I 0 x N y N i = x j = y l 0 if l = L i M j 0 R I = if I = L x M y 0 R
117 101 116 95 96 114 ovmpod N Fin R CRing M K L 0 I 0 x N y N x i N , j N l 0 if l = L i M j 0 R I y = if I = L x M y 0 R
118 ifov x if I = L M 0 ˙ y = if I = L x M y x 0 ˙ y
119 118 a1i N Fin R CRing M K L 0 I 0 x N y N x if I = L M 0 ˙ y = if I = L x M y x 0 ˙ y
120 100 117 119 3eqtr4d N Fin R CRing M K L 0 I 0 x N y N x i N , j N l 0 if l = L i M j 0 R I y = x if I = L M 0 ˙ y
121 120 ralrimivva N Fin R CRing M K L 0 I 0 x N y N x i N , j N l 0 if l = L i M j 0 R I y = x if I = L M 0 ˙ y
122 simplr N Fin R CRing M K L 0 I 0 R CRing
123 eqidd N Fin R CRing M K L 0 I 0 i N j N l 0 if l = L i M j 0 R = l 0 if l = L i M j 0 R
124 107 ifbid l = I if l = L i M j 0 R = if I = L i M j 0 R
125 124 adantl N Fin R CRing M K L 0 I 0 i N j N l = I if l = L i M j 0 R = if I = L i M j 0 R
126 32 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N I 0
127 54 83 ring0cl R Ring 0 R Base R
128 15 127 syl N Fin R CRing 0 R Base R
129 128 adantr N Fin R CRing M K L 0 I 0 0 R Base R
130 129 3ad2ant1 N Fin R CRing M K L 0 I 0 i N j N 0 R Base R
131 63 130 ifcld N Fin R CRing M K L 0 I 0 i N j N if I = L i M j 0 R Base R
132 123 125 126 131 fvmptd N Fin R CRing M K L 0 I 0 i N j N l 0 if l = L i M j 0 R I = if I = L i M j 0 R
133 132 131 eqeltrd N Fin R CRing M K L 0 I 0 i N j N l 0 if l = L i M j 0 R I Base R
134 3 54 4 10 122 133 matbas2d N Fin R CRing M K L 0 I 0 i N , j N l 0 if l = L i M j 0 R I K
135 61 58 sylibr N Fin R CRing M K L 0 I 0 M K
136 3 matring N Fin R Ring A Ring
137 4 5 ring0cl A Ring 0 ˙ K
138 21 136 137 3syl N Fin R CRing 0 ˙ K
139 138 adantr N Fin R CRing M K L 0 I 0 0 ˙ K
140 135 139 ifcld N Fin R CRing M K L 0 I 0 if I = L M 0 ˙ K
141 3 4 eqmat i N , j N l 0 if l = L i M j 0 R I K if I = L M 0 ˙ K i N , j N l 0 if l = L i M j 0 R I = if I = L M 0 ˙ x N y N x i N , j N l 0 if l = L i M j 0 R I y = x if I = L M 0 ˙ y
142 134 140 141 syl2anc N Fin R CRing M K L 0 I 0 i N , j N l 0 if l = L i M j 0 R I = if I = L M 0 ˙ x N y N x i N , j N l 0 if l = L i M j 0 R I y = x if I = L M 0 ˙ y
143 121 142 mpbird N Fin R CRing M K L 0 I 0 i N , j N l 0 if l = L i M j 0 R I = if I = L M 0 ˙
144 34 88 143 3eqtrd N Fin R CRing M K L 0 I 0 L × ˙ X · ˙ T M decompPMat I = if I = L M 0 ˙