Metamath Proof Explorer


Theorem mretopd

Description: A Moore collection which is closed under finite unions called topological; such a collection is the closed sets of a canonically associated topology. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses mretopd.m φMMooreB
mretopd.z φM
mretopd.u φxMyMxyM
mretopd.j J=z𝒫B|BzM
Assertion mretopd φJTopOnBM=ClsdJ

Proof

Step Hyp Ref Expression
1 mretopd.m φMMooreB
2 mretopd.z φM
3 mretopd.u φxMyMxyM
4 mretopd.j J=z𝒫B|BzM
5 unieq a=a=
6 uni0 =
7 5 6 eqtrdi a=a=
8 7 eleq1d a=aJJ
9 4 ssrab3 J𝒫B
10 sstr aJJ𝒫Ba𝒫B
11 9 10 mpan2 aJa𝒫B
12 11 adantl φaJa𝒫B
13 sspwuni a𝒫BaB
14 12 13 sylib φaJaB
15 vuniex aV
16 15 elpw a𝒫BaB
17 14 16 sylibr φaJa𝒫B
18 17 adantr φaJaa𝒫B
19 uniiun a=bab
20 19 difeq2i Ba=Bbab
21 iindif2 abaBb=Bbab
22 21 adantl φaJabaBb=Bbab
23 1 ad2antrr φaJaMMooreB
24 simpr φaJaa
25 difeq2 z=bBz=Bb
26 25 eleq1d z=bBzMBbM
27 26 4 elrab2 bJb𝒫BBbM
28 27 simprbi bJBbM
29 28 rgen bJBbM
30 ssralv aJbJBbMbaBbM
31 30 adantl φaJbJBbMbaBbM
32 29 31 mpi φaJbaBbM
33 32 adantr φaJabaBbM
34 mreiincl MMooreBabaBbMbaBbM
35 23 24 33 34 syl3anc φaJabaBbM
36 22 35 eqeltrrd φaJaBbabM
37 20 36 eqeltrid φaJaBaM
38 difeq2 z=aBz=Ba
39 38 eleq1d z=aBzMBaM
40 39 4 elrab2 aJa𝒫BBaM
41 18 37 40 sylanbrc φaJaaJ
42 0elpw 𝒫B
43 42 a1i φ𝒫B
44 mre1cl MMooreBBM
45 1 44 syl φBM
46 difeq2 z=Bz=B
47 dif0 B=B
48 46 47 eqtrdi z=Bz=B
49 48 eleq1d z=BzMBM
50 49 4 elrab2 J𝒫BBM
51 43 45 50 sylanbrc φJ
52 51 adantr φaJJ
53 8 41 52 pm2.61ne φaJaJ
54 53 ex φaJaJ
55 54 alrimiv φaaJaJ
56 inss1 aba
57 difeq2 z=aBz=Ba
58 57 eleq1d z=aBzMBaM
59 58 4 elrab2 aJa𝒫BBaM
60 59 simplbi aJa𝒫B
61 60 elpwid aJaB
62 61 ad2antrl φaJbJaB
63 56 62 sstrid φaJbJabB
64 vex aV
65 64 inex1 abV
66 65 elpw ab𝒫BabB
67 63 66 sylibr φaJbJab𝒫B
68 difindi Bab=BaBb
69 59 simprbi aJBaM
70 69 ad2antrl φaJbJBaM
71 28 ad2antll φaJbJBbM
72 simpl φaJbJφ
73 uneq1 x=Baxy=Bay
74 73 eleq1d x=BaxyMBayM
75 74 imbi2d x=BaφxyMφBayM
76 uneq2 y=BbBay=BaBb
77 76 eleq1d y=BbBayMBaBbM
78 77 imbi2d y=BbφBayMφBaBbM
79 3 3expb φxMyMxyM
80 79 expcom xMyMφxyM
81 75 78 80 vtocl2ga BaMBbMφBaBbM
82 81 imp BaMBbMφBaBbM
83 70 71 72 82 syl21anc φaJbJBaBbM
84 68 83 eqeltrid φaJbJBabM
85 difeq2 z=abBz=Bab
86 85 eleq1d z=abBzMBabM
87 86 4 elrab2 abJab𝒫BBabM
88 67 84 87 sylanbrc φaJbJabJ
89 88 ralrimivva φaJbJabJ
90 45 pwexd φ𝒫BV
91 4 90 rabexd φJV
92 istopg JVJTopaaJaJaJbJabJ
93 91 92 syl φJTopaaJaJaJbJabJ
94 55 89 93 mpbir2and φJTop
95 9 unissi J𝒫B
96 unipw 𝒫B=B
97 95 96 sseqtri JB
98 pwidg BMB𝒫B
99 45 98 syl φB𝒫B
100 difid BB=
101 100 2 eqeltrid φBBM
102 difeq2 z=BBz=BB
103 102 eleq1d z=BBzMBBM
104 103 4 elrab2 BJB𝒫BBBM
105 99 101 104 sylanbrc φBJ
106 unissel JBBJJ=B
107 97 105 106 sylancr φJ=B
108 107 eqcomd φB=J
109 istopon JTopOnBJTopB=J
110 94 108 109 sylanbrc φJTopOnB
111 eqid J=J
112 111 cldval JTopClsdJ=x𝒫J|JxJ
113 94 112 syl φClsdJ=x𝒫J|JxJ
114 107 pweqd φ𝒫J=𝒫B
115 107 difeq1d φJx=Bx
116 115 eleq1d φJxJBxJ
117 114 116 rabeqbidv φx𝒫J|JxJ=x𝒫B|BxJ
118 4 eleq2i BxJBxz𝒫B|BzM
119 difss BxB
120 elpw2g BMBx𝒫BBxB
121 45 120 syl φBx𝒫BBxB
122 119 121 mpbiri φBx𝒫B
123 difeq2 z=BxBz=BBx
124 123 eleq1d z=BxBzMBBxM
125 124 elrab3 Bx𝒫BBxz𝒫B|BzMBBxM
126 122 125 syl φBxz𝒫B|BzMBBxM
127 126 adantr φx𝒫BBxz𝒫B|BzMBBxM
128 118 127 bitrid φx𝒫BBxJBBxM
129 elpwi x𝒫BxB
130 dfss4 xBBBx=x
131 129 130 sylib x𝒫BBBx=x
132 131 adantl φx𝒫BBBx=x
133 132 eleq1d φx𝒫BBBxMxM
134 128 133 bitrd φx𝒫BBxJxM
135 134 rabbidva φx𝒫B|BxJ=x𝒫B|xM
136 incom M𝒫B=𝒫BM
137 dfin5 𝒫BM=x𝒫B|xM
138 136 137 eqtri M𝒫B=x𝒫B|xM
139 mresspw MMooreBM𝒫B
140 1 139 syl φM𝒫B
141 df-ss M𝒫BM𝒫B=M
142 140 141 sylib φM𝒫B=M
143 138 142 eqtr3id φx𝒫B|xM=M
144 135 143 eqtrd φx𝒫B|BxJ=M
145 113 117 144 3eqtrrd φM=ClsdJ
146 110 145 jca φJTopOnBM=ClsdJ