| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mretopd.m |
|
| 2 |
|
mretopd.z |
|
| 3 |
|
mretopd.u |
|
| 4 |
|
mretopd.j |
|
| 5 |
|
unieq |
|
| 6 |
|
uni0 |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
7
|
eleq1d |
|
| 9 |
4
|
ssrab3 |
|
| 10 |
|
sstr |
|
| 11 |
9 10
|
mpan2 |
|
| 12 |
11
|
adantl |
|
| 13 |
|
sspwuni |
|
| 14 |
12 13
|
sylib |
|
| 15 |
|
vuniex |
|
| 16 |
15
|
elpw |
|
| 17 |
14 16
|
sylibr |
|
| 18 |
17
|
adantr |
|
| 19 |
|
uniiun |
|
| 20 |
19
|
difeq2i |
|
| 21 |
|
iindif2 |
|
| 22 |
21
|
adantl |
|
| 23 |
1
|
ad2antrr |
|
| 24 |
|
simpr |
|
| 25 |
|
difeq2 |
|
| 26 |
25
|
eleq1d |
|
| 27 |
26 4
|
elrab2 |
|
| 28 |
27
|
simprbi |
|
| 29 |
28
|
rgen |
|
| 30 |
|
ssralv |
|
| 31 |
30
|
adantl |
|
| 32 |
29 31
|
mpi |
|
| 33 |
32
|
adantr |
|
| 34 |
|
mreiincl |
|
| 35 |
23 24 33 34
|
syl3anc |
|
| 36 |
22 35
|
eqeltrrd |
|
| 37 |
20 36
|
eqeltrid |
|
| 38 |
|
difeq2 |
|
| 39 |
38
|
eleq1d |
|
| 40 |
39 4
|
elrab2 |
|
| 41 |
18 37 40
|
sylanbrc |
|
| 42 |
|
0elpw |
|
| 43 |
42
|
a1i |
|
| 44 |
|
mre1cl |
|
| 45 |
1 44
|
syl |
|
| 46 |
|
difeq2 |
|
| 47 |
|
dif0 |
|
| 48 |
46 47
|
eqtrdi |
|
| 49 |
48
|
eleq1d |
|
| 50 |
49 4
|
elrab2 |
|
| 51 |
43 45 50
|
sylanbrc |
|
| 52 |
51
|
adantr |
|
| 53 |
8 41 52
|
pm2.61ne |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
alrimiv |
|
| 56 |
|
inss1 |
|
| 57 |
|
difeq2 |
|
| 58 |
57
|
eleq1d |
|
| 59 |
58 4
|
elrab2 |
|
| 60 |
59
|
simplbi |
|
| 61 |
60
|
elpwid |
|
| 62 |
61
|
ad2antrl |
|
| 63 |
56 62
|
sstrid |
|
| 64 |
|
vex |
|
| 65 |
64
|
inex1 |
|
| 66 |
65
|
elpw |
|
| 67 |
63 66
|
sylibr |
|
| 68 |
|
difindi |
|
| 69 |
59
|
simprbi |
|
| 70 |
69
|
ad2antrl |
|
| 71 |
28
|
ad2antll |
|
| 72 |
|
simpl |
|
| 73 |
|
uneq1 |
|
| 74 |
73
|
eleq1d |
|
| 75 |
74
|
imbi2d |
|
| 76 |
|
uneq2 |
|
| 77 |
76
|
eleq1d |
|
| 78 |
77
|
imbi2d |
|
| 79 |
3
|
3expb |
|
| 80 |
79
|
expcom |
|
| 81 |
75 78 80
|
vtocl2ga |
|
| 82 |
81
|
imp |
|
| 83 |
70 71 72 82
|
syl21anc |
|
| 84 |
68 83
|
eqeltrid |
|
| 85 |
|
difeq2 |
|
| 86 |
85
|
eleq1d |
|
| 87 |
86 4
|
elrab2 |
|
| 88 |
67 84 87
|
sylanbrc |
|
| 89 |
88
|
ralrimivva |
|
| 90 |
45
|
pwexd |
|
| 91 |
4 90
|
rabexd |
|
| 92 |
|
istopg |
|
| 93 |
91 92
|
syl |
|
| 94 |
55 89 93
|
mpbir2and |
|
| 95 |
9
|
unissi |
|
| 96 |
|
unipw |
|
| 97 |
95 96
|
sseqtri |
|
| 98 |
|
pwidg |
|
| 99 |
45 98
|
syl |
|
| 100 |
|
difid |
|
| 101 |
100 2
|
eqeltrid |
|
| 102 |
|
difeq2 |
|
| 103 |
102
|
eleq1d |
|
| 104 |
103 4
|
elrab2 |
|
| 105 |
99 101 104
|
sylanbrc |
|
| 106 |
|
unissel |
|
| 107 |
97 105 106
|
sylancr |
|
| 108 |
107
|
eqcomd |
|
| 109 |
|
istopon |
|
| 110 |
94 108 109
|
sylanbrc |
|
| 111 |
|
eqid |
|
| 112 |
111
|
cldval |
|
| 113 |
94 112
|
syl |
|
| 114 |
107
|
pweqd |
|
| 115 |
107
|
difeq1d |
|
| 116 |
115
|
eleq1d |
|
| 117 |
114 116
|
rabeqbidv |
|
| 118 |
4
|
eleq2i |
|
| 119 |
|
difss |
|
| 120 |
|
elpw2g |
|
| 121 |
45 120
|
syl |
|
| 122 |
119 121
|
mpbiri |
|
| 123 |
|
difeq2 |
|
| 124 |
123
|
eleq1d |
|
| 125 |
124
|
elrab3 |
|
| 126 |
122 125
|
syl |
|
| 127 |
126
|
adantr |
|
| 128 |
118 127
|
bitrid |
|
| 129 |
|
elpwi |
|
| 130 |
|
dfss4 |
|
| 131 |
129 130
|
sylib |
|
| 132 |
131
|
adantl |
|
| 133 |
132
|
eleq1d |
|
| 134 |
128 133
|
bitrd |
|
| 135 |
134
|
rabbidva |
|
| 136 |
|
incom |
|
| 137 |
|
dfin5 |
|
| 138 |
136 137
|
eqtri |
|
| 139 |
|
mresspw |
|
| 140 |
1 139
|
syl |
|
| 141 |
|
dfss2 |
|
| 142 |
140 141
|
sylib |
|
| 143 |
138 142
|
eqtr3id |
|
| 144 |
135 143
|
eqtrd |
|
| 145 |
113 117 144
|
3eqtrrd |
|
| 146 |
110 145
|
jca |
|