Metamath Proof Explorer


Theorem o1rlimmul

Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Assertion o1rlimmul F𝑂1G0F×fG0

Proof

Step Hyp Ref Expression
1 o1f F𝑂1F:domF
2 1 adantr F𝑂1G0F:domF
3 2 ffnd F𝑂1G0FFndomF
4 rlimf G0G:domG
5 4 adantl F𝑂1G0G:domG
6 5 ffnd F𝑂1G0GFndomG
7 o1dm F𝑂1domF
8 7 adantr F𝑂1G0domF
9 reex V
10 ssexg domFVdomFV
11 8 9 10 sylancl F𝑂1G0domFV
12 rlimss G0domG
13 12 adantl F𝑂1G0domG
14 ssexg domGVdomGV
15 13 9 14 sylancl F𝑂1G0domGV
16 eqid domFdomG=domFdomG
17 eqidd F𝑂1G0xdomFFx=Fx
18 eqidd F𝑂1G0xdomGGx=Gx
19 3 6 11 15 16 17 18 offval F𝑂1G0F×fG=xdomFdomGFxGx
20 o1bdd F𝑂1F:domFamxdomFaxFxm
21 1 20 mpdan F𝑂1amxdomFaxFxm
22 21 ad2antrr F𝑂1G0y+amxdomFaxFxm
23 fvexd F𝑂1G0y+amxdomGGxV
24 23 ralrimiva F𝑂1G0y+amxdomGGxV
25 simplr F𝑂1G0y+amy+
26 recn mm
27 26 ad2antll F𝑂1G0y+amm
28 27 abscld F𝑂1G0y+amm
29 27 absge0d F𝑂1G0y+am0m
30 28 29 ge0p1rpd F𝑂1G0y+amm+1+
31 25 30 rpdivcld F𝑂1G0y+amym+1+
32 5 feqmptd F𝑂1G0G=xdomGGx
33 simpr F𝑂1G0G0
34 32 33 eqbrtrrd F𝑂1G0xdomGGx0
35 34 ad2antrr F𝑂1G0y+amxdomGGx0
36 24 31 35 rlimi F𝑂1G0y+ambxdomGbxGx0<ym+1
37 inss1 domFdomGdomF
38 ssralv domFdomGdomFxdomFaxFxmxdomFdomGaxFxm
39 37 38 ax-mp xdomFaxFxmxdomFdomGaxFxm
40 inss2 domFdomGdomG
41 ssralv domFdomGdomGxdomGbxGx0<ym+1xdomFdomGbxGx0<ym+1
42 40 41 ax-mp xdomGbxGx0<ym+1xdomFdomGbxGx0<ym+1
43 39 42 anim12i xdomFaxFxmxdomGbxGx0<ym+1xdomFdomGaxFxmxdomFdomGbxGx0<ym+1
44 r19.26 xdomFdomGaxFxmbxGx0<ym+1xdomFdomGaxFxmxdomFdomGbxGx0<ym+1
45 43 44 sylibr xdomFaxFxmxdomGbxGx0<ym+1xdomFdomGaxFxmbxGx0<ym+1
46 anim12 axFxmbxGx0<ym+1axbxFxmGx0<ym+1
47 46 ralimi xdomFdomGaxFxmbxGx0<ym+1xdomFdomGaxbxFxmGx0<ym+1
48 45 47 syl xdomFaxFxmxdomGbxGx0<ym+1xdomFdomGaxbxFxmGx0<ym+1
49 simplrl F𝑂1G0y+ambxdomFdomGa
50 simprl F𝑂1G0y+ambxdomFdomGb
51 37 8 sstrid F𝑂1G0domFdomG
52 51 ad3antrrr F𝑂1G0y+ambxdomFdomGdomFdomG
53 simprr F𝑂1G0y+ambxdomFdomGxdomFdomG
54 52 53 sseldd F𝑂1G0y+ambxdomFdomGx
55 maxle abxifabbaxaxbx
56 49 50 54 55 syl3anc F𝑂1G0y+ambxdomFdomGifabbaxaxbx
57 56 biimpd F𝑂1G0y+ambxdomFdomGifabbaxaxbx
58 5 ad3antrrr F𝑂1G0y+ambxdomFdomGG:domG
59 40 sseli xdomFdomGxdomG
60 59 ad2antll F𝑂1G0y+ambxdomFdomGxdomG
61 58 60 ffvelcdmd F𝑂1G0y+ambxdomFdomGGx
62 61 subid1d F𝑂1G0y+ambxdomFdomGGx0=Gx
63 62 fveq2d F𝑂1G0y+ambxdomFdomGGx0=Gx
64 63 breq1d F𝑂1G0y+ambxdomFdomGGx0<ym+1Gx<ym+1
65 61 abscld F𝑂1G0y+ambxdomFdomGGx
66 31 adantr F𝑂1G0y+ambxdomFdomGym+1+
67 66 rpred F𝑂1G0y+ambxdomFdomGym+1
68 ltle Gxym+1Gx<ym+1Gxym+1
69 65 67 68 syl2anc F𝑂1G0y+ambxdomFdomGGx<ym+1Gxym+1
70 64 69 sylbid F𝑂1G0y+ambxdomFdomGGx0<ym+1Gxym+1
71 70 anim2d F𝑂1G0y+ambxdomFdomGFxmGx0<ym+1FxmGxym+1
72 2 ad3antrrr F𝑂1G0y+ambxdomFdomGF:domF
73 37 sseli xdomFdomGxdomF
74 73 ad2antll F𝑂1G0y+ambxdomFdomGxdomF
75 72 74 ffvelcdmd F𝑂1G0y+ambxdomFdomGFx
76 75 abscld F𝑂1G0y+ambxdomFdomGFx
77 75 absge0d F𝑂1G0y+ambxdomFdomG0Fx
78 76 77 jca F𝑂1G0y+ambxdomFdomGFx0Fx
79 simplrr F𝑂1G0y+ambxdomFdomGm
80 61 absge0d F𝑂1G0y+ambxdomFdomG0Gx
81 65 80 jca F𝑂1G0y+ambxdomFdomGGx0Gx
82 lemul12a Fx0FxmGx0Gxym+1FxmGxym+1FxGxmym+1
83 78 79 81 67 82 syl22anc F𝑂1G0y+ambxdomFdomGFxmGxym+1FxGxmym+1
84 75 61 absmuld F𝑂1G0y+ambxdomFdomGFxGx=FxGx
85 84 breq1d F𝑂1G0y+ambxdomFdomGFxGxmym+1FxGxmym+1
86 79 recnd F𝑂1G0y+ambxdomFdomGm
87 25 adantr F𝑂1G0y+ambxdomFdomGy+
88 87 rpcnd F𝑂1G0y+ambxdomFdomGy
89 30 adantr F𝑂1G0y+ambxdomFdomGm+1+
90 89 rpcnd F𝑂1G0y+ambxdomFdomGm+1
91 89 rpne0d F𝑂1G0y+ambxdomFdomGm+10
92 86 88 90 91 divassd F𝑂1G0y+ambxdomFdomGmym+1=mym+1
93 peano2re mm+1
94 28 93 syl F𝑂1G0y+amm+1
95 94 adantr F𝑂1G0y+ambxdomFdomGm+1
96 28 adantr F𝑂1G0y+ambxdomFdomGm
97 79 leabsd F𝑂1G0y+ambxdomFdomGmm
98 96 ltp1d F𝑂1G0y+ambxdomFdomGm<m+1
99 79 96 95 97 98 lelttrd F𝑂1G0y+ambxdomFdomGm<m+1
100 79 95 87 99 ltmul1dd F𝑂1G0y+ambxdomFdomGmy<m+1y
101 87 rpred F𝑂1G0y+ambxdomFdomGy
102 79 101 remulcld F𝑂1G0y+ambxdomFdomGmy
103 102 101 89 ltdivmuld F𝑂1G0y+ambxdomFdomGmym+1<ymy<m+1y
104 100 103 mpbird F𝑂1G0y+ambxdomFdomGmym+1<y
105 92 104 eqbrtrrd F𝑂1G0y+ambxdomFdomGmym+1<y
106 75 61 mulcld F𝑂1G0y+ambxdomFdomGFxGx
107 106 abscld F𝑂1G0y+ambxdomFdomGFxGx
108 79 67 remulcld F𝑂1G0y+ambxdomFdomGmym+1
109 lelttr FxGxmym+1yFxGxmym+1mym+1<yFxGx<y
110 107 108 101 109 syl3anc F𝑂1G0y+ambxdomFdomGFxGxmym+1mym+1<yFxGx<y
111 105 110 mpan2d F𝑂1G0y+ambxdomFdomGFxGxmym+1FxGx<y
112 85 111 sylbird F𝑂1G0y+ambxdomFdomGFxGxmym+1FxGx<y
113 71 83 112 3syld F𝑂1G0y+ambxdomFdomGFxmGx0<ym+1FxGx<y
114 57 113 imim12d F𝑂1G0y+ambxdomFdomGaxbxFxmGx0<ym+1ifabbaxFxGx<y
115 114 anassrs F𝑂1G0y+ambxdomFdomGaxbxFxmGx0<ym+1ifabbaxFxGx<y
116 115 ralimdva F𝑂1G0y+ambxdomFdomGaxbxFxmGx0<ym+1xdomFdomGifabbaxFxGx<y
117 simpr F𝑂1G0y+ambb
118 simplrl F𝑂1G0y+amba
119 117 118 ifcld F𝑂1G0y+ambifabba
120 116 119 jctild F𝑂1G0y+ambxdomFdomGaxbxFxmGx0<ym+1ifabbaxdomFdomGifabbaxFxGx<y
121 breq1 z=ifabbazxifabbax
122 121 rspceaimv ifabbaxdomFdomGifabbaxFxGx<yzxdomFdomGzxFxGx<y
123 48 120 122 syl56 F𝑂1G0y+ambxdomFaxFxmxdomGbxGx0<ym+1zxdomFdomGzxFxGx<y
124 123 expcomd F𝑂1G0y+ambxdomGbxGx0<ym+1xdomFaxFxmzxdomFdomGzxFxGx<y
125 124 rexlimdva F𝑂1G0y+ambxdomGbxGx0<ym+1xdomFaxFxmzxdomFdomGzxFxGx<y
126 36 125 mpd F𝑂1G0y+amxdomFaxFxmzxdomFdomGzxFxGx<y
127 126 rexlimdvva F𝑂1G0y+amxdomFaxFxmzxdomFdomGzxFxGx<y
128 22 127 mpd F𝑂1G0y+zxdomFdomGzxFxGx<y
129 128 ralrimiva F𝑂1G0y+zxdomFdomGzxFxGx<y
130 ffvelcdm F:domFxdomFFx
131 2 73 130 syl2an F𝑂1G0xdomFdomGFx
132 ffvelcdm G:domGxdomGGx
133 5 59 132 syl2an F𝑂1G0xdomFdomGGx
134 131 133 mulcld F𝑂1G0xdomFdomGFxGx
135 134 ralrimiva F𝑂1G0xdomFdomGFxGx
136 135 51 rlim0 F𝑂1G0xdomFdomGFxGx0y+zxdomFdomGzxFxGx<y
137 129 136 mpbird F𝑂1G0xdomFdomGFxGx0
138 19 137 eqbrtrd F𝑂1G0F×fG0