Step |
Hyp |
Ref |
Expression |
1 |
|
omsmeas.m |
|
2 |
|
omsmeas.s |
|
3 |
|
omsmeas.o |
|
4 |
|
omsmeas.r |
|
5 |
|
omsmeas.d |
|
6 |
|
omsmeas.0 |
|
7 |
|
omsf |
|
8 |
3 4 7
|
syl2anc |
|
9 |
1
|
a1i |
|
10 |
4
|
fdmd |
|
11 |
10
|
eqcomd |
|
12 |
11
|
unieqd |
|
13 |
12
|
pweqd |
|
14 |
9 13
|
feq12d |
|
15 |
8 14
|
mpbird |
|
16 |
3
|
uniexd |
|
17 |
16 15
|
carsgcl |
|
18 |
2 17
|
eqsstrid |
|
19 |
15 18
|
fssresd |
|
20 |
1 3 4 5 6
|
oms0 |
|
21 |
16 15 20
|
0elcarsg |
|
22 |
21 2
|
eleqtrrdi |
|
23 |
|
fvres |
|
24 |
22 23
|
syl |
|
25 |
24 20
|
eqtrd |
|
26 |
|
nfcv |
|
27 |
|
nfcv |
|
28 |
|
id |
|
29 |
26 27 28
|
cbvdisj |
|
30 |
29
|
anbi2i |
|
31 |
3
|
ad2antrr |
|
32 |
4
|
ad2antrr |
|
33 |
|
simplr |
|
34 |
33
|
elpwid |
|
35 |
18
|
ad2antrr |
|
36 |
34 35
|
sstrd |
|
37 |
36
|
sselda |
|
38 |
37
|
elpwid |
|
39 |
|
simprl |
|
40 |
1 31 32 38 39
|
omssubadd |
|
41 |
16
|
ad2antrr |
|
42 |
15
|
ad2antrr |
|
43 |
20
|
ad2antrr |
|
44 |
|
uniiun |
|
45 |
44
|
fveq2i |
|
46 |
3
|
3ad2ant1 |
|
47 |
4
|
3ad2ant1 |
|
48 |
|
simpl3 |
|
49 |
|
simpr |
|
50 |
48 49
|
sseldd |
|
51 |
50
|
elpwid |
|
52 |
|
simp2 |
|
53 |
1 46 47 51 52
|
omssubadd |
|
54 |
45 53
|
eqbrtrid |
|
55 |
54
|
3adant1r |
|
56 |
55
|
3adant1r |
|
57 |
3
|
3ad2ant1 |
|
58 |
4
|
3ad2ant1 |
|
59 |
|
simp2 |
|
60 |
|
elpwi |
|
61 |
60
|
3ad2ant3 |
|
62 |
1 57 58 59 61
|
omsmon |
|
63 |
62
|
3adant1r |
|
64 |
63
|
3adant1r |
|
65 |
|
elpwi |
|
66 |
65
|
ad2antlr |
|
67 |
66 2
|
sseqtrdi |
|
68 |
41 42 43 56 64 39 67
|
carsgclctun |
|
69 |
68 2
|
eleqtrrdi |
|
70 |
|
fvres |
|
71 |
|
uniiun |
|
72 |
71
|
fveq2i |
|
73 |
70 72
|
eqtrdi |
|
74 |
69 73
|
syl |
|
75 |
|
nfv |
|
76 |
66
|
sselda |
|
77 |
|
fvres |
|
78 |
76 77
|
syl |
|
79 |
78
|
ralrimiva |
|
80 |
75 79
|
esumeq2d |
|
81 |
40 74 80
|
3brtr4d |
|
82 |
|
snex |
|
83 |
82
|
a1i |
|
84 |
42
|
adantr |
|
85 |
84 37
|
ffvelrnd |
|
86 |
|
elsni |
|
87 |
86
|
fveq2d |
|
88 |
87 43
|
sylan9eqr |
|
89 |
33 83 85 88
|
esumpad2 |
|
90 |
|
neldifsnd |
|
91 |
|
difss |
|
92 |
|
ssdomg |
|
93 |
33 91 92
|
mpisyl |
|
94 |
|
domtr |
|
95 |
93 39 94
|
syl2anc |
|
96 |
67
|
ssdifssd |
|
97 |
|
simprr |
|
98 |
|
nfcv |
|
99 |
|
nfcv |
|
100 |
|
id |
|
101 |
98 99 100
|
cbvdisj |
|
102 |
97 101
|
sylib |
|
103 |
|
disjss1 |
|
104 |
91 102 103
|
mpsyl |
|
105 |
41 42 43 56 90 95 96 104 64
|
carsggect |
|
106 |
89 105
|
eqbrtrrd |
|
107 |
|
unidif0 |
|
108 |
107
|
fveq2i |
|
109 |
106 108
|
breqtrdi |
|
110 |
69 70
|
syl |
|
111 |
109 80 110
|
3brtr4d |
|
112 |
81 111
|
jca |
|
113 |
|
iccssxr |
|
114 |
19
|
ad2antrr |
|
115 |
114 69
|
ffvelrnd |
|
116 |
113 115
|
sselid |
|
117 |
114
|
adantr |
|
118 |
117 76
|
ffvelrnd |
|
119 |
118
|
ralrimiva |
|
120 |
|
nfcv |
|
121 |
120
|
esumcl |
|
122 |
33 119 121
|
syl2anc |
|
123 |
113 122
|
sselid |
|
124 |
|
xrletri3 |
|
125 |
116 123 124
|
syl2anc |
|
126 |
112 125
|
mpbird |
|
127 |
30 126
|
sylan2b |
|
128 |
127
|
ex |
|
129 |
128
|
ralrimiva |
|
130 |
19 25 129
|
3jca |
|
131 |
16 15 20 54 62
|
carsgsiga |
|
132 |
2 131
|
eqeltrid |
|
133 |
|
elrnsiga |
|
134 |
|
ismeas |
|
135 |
132 133 134
|
3syl |
|
136 |
130 135
|
mpbird |
|