Metamath Proof Explorer


Theorem omsmeas

Description: The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses omsmeas.m M = toOMeas R
omsmeas.s S = toCaraSiga M
omsmeas.o φ Q V
omsmeas.r φ R : Q 0 +∞
omsmeas.d φ dom R
omsmeas.0 φ R = 0
Assertion omsmeas φ M S measures S

Proof

Step Hyp Ref Expression
1 omsmeas.m M = toOMeas R
2 omsmeas.s S = toCaraSiga M
3 omsmeas.o φ Q V
4 omsmeas.r φ R : Q 0 +∞
5 omsmeas.d φ dom R
6 omsmeas.0 φ R = 0
7 omsf Q V R : Q 0 +∞ toOMeas R : 𝒫 dom R 0 +∞
8 3 4 7 syl2anc φ toOMeas R : 𝒫 dom R 0 +∞
9 1 a1i φ M = toOMeas R
10 4 fdmd φ dom R = Q
11 10 eqcomd φ Q = dom R
12 11 unieqd φ Q = dom R
13 12 pweqd φ 𝒫 Q = 𝒫 dom R
14 9 13 feq12d φ M : 𝒫 Q 0 +∞ toOMeas R : 𝒫 dom R 0 +∞
15 8 14 mpbird φ M : 𝒫 Q 0 +∞
16 3 uniexd φ Q V
17 16 15 carsgcl φ toCaraSiga M 𝒫 Q
18 2 17 eqsstrid φ S 𝒫 Q
19 15 18 fssresd φ M S : S 0 +∞
20 1 3 4 5 6 oms0 φ M = 0
21 16 15 20 0elcarsg φ toCaraSiga M
22 21 2 eleqtrrdi φ S
23 fvres S M S = M
24 22 23 syl φ M S = M
25 24 20 eqtrd φ M S = 0
26 nfcv _ g f
27 nfcv _ f g
28 id f = g f = g
29 26 27 28 cbvdisj Disj f e f Disj g e g
30 29 anbi2i e ω Disj f e f e ω Disj g e g
31 3 ad2antrr φ e 𝒫 S e ω Disj g e g Q V
32 4 ad2antrr φ e 𝒫 S e ω Disj g e g R : Q 0 +∞
33 simplr φ e 𝒫 S e ω Disj g e g e 𝒫 S
34 33 elpwid φ e 𝒫 S e ω Disj g e g e S
35 18 ad2antrr φ e 𝒫 S e ω Disj g e g S 𝒫 Q
36 34 35 sstrd φ e 𝒫 S e ω Disj g e g e 𝒫 Q
37 36 sselda φ e 𝒫 S e ω Disj g e g f e f 𝒫 Q
38 37 elpwid φ e 𝒫 S e ω Disj g e g f e f Q
39 simprl φ e 𝒫 S e ω Disj g e g e ω
40 1 31 32 38 39 omssubadd φ e 𝒫 S e ω Disj g e g M f e f * f e M f
41 16 ad2antrr φ e 𝒫 S e ω Disj g e g Q V
42 15 ad2antrr φ e 𝒫 S e ω Disj g e g M : 𝒫 Q 0 +∞
43 20 ad2antrr φ e 𝒫 S e ω Disj g e g M = 0
44 uniiun x = y x y
45 44 fveq2i M x = M y x y
46 3 3ad2ant1 φ x ω x 𝒫 Q Q V
47 4 3ad2ant1 φ x ω x 𝒫 Q R : Q 0 +∞
48 simpl3 φ x ω x 𝒫 Q y x x 𝒫 Q
49 simpr φ x ω x 𝒫 Q y x y x
50 48 49 sseldd φ x ω x 𝒫 Q y x y 𝒫 Q
51 50 elpwid φ x ω x 𝒫 Q y x y Q
52 simp2 φ x ω x 𝒫 Q x ω
53 1 46 47 51 52 omssubadd φ x ω x 𝒫 Q M y x y * y x M y
54 45 53 eqbrtrid φ x ω x 𝒫 Q M x * y x M y
55 54 3adant1r φ e 𝒫 S x ω x 𝒫 Q M x * y x M y
56 55 3adant1r φ e 𝒫 S e ω Disj g e g x ω x 𝒫 Q M x * y x M y
57 3 3ad2ant1 φ x y y 𝒫 Q Q V
58 4 3ad2ant1 φ x y y 𝒫 Q R : Q 0 +∞
59 simp2 φ x y y 𝒫 Q x y
60 elpwi y 𝒫 Q y Q
61 60 3ad2ant3 φ x y y 𝒫 Q y Q
62 1 57 58 59 61 omsmon φ x y y 𝒫 Q M x M y
63 62 3adant1r φ e 𝒫 S x y y 𝒫 Q M x M y
64 63 3adant1r φ e 𝒫 S e ω Disj g e g x y y 𝒫 Q M x M y
65 elpwi e 𝒫 S e S
66 65 ad2antlr φ e 𝒫 S e ω Disj g e g e S
67 66 2 sseqtrdi φ e 𝒫 S e ω Disj g e g e toCaraSiga M
68 41 42 43 56 64 39 67 carsgclctun φ e 𝒫 S e ω Disj g e g e toCaraSiga M
69 68 2 eleqtrrdi φ e 𝒫 S e ω Disj g e g e S
70 fvres e S M S e = M e
71 uniiun e = f e f
72 71 fveq2i M e = M f e f
73 70 72 syl6eq e S M S e = M f e f
74 69 73 syl φ e 𝒫 S e ω Disj g e g M S e = M f e f
75 nfv f φ e 𝒫 S e ω Disj g e g
76 66 sselda φ e 𝒫 S e ω Disj g e g f e f S
77 fvres f S M S f = M f
78 76 77 syl φ e 𝒫 S e ω Disj g e g f e M S f = M f
79 78 ralrimiva φ e 𝒫 S e ω Disj g e g f e M S f = M f
80 75 79 esumeq2d φ e 𝒫 S e ω Disj g e g * f e M S f = * f e M f
81 40 74 80 3brtr4d φ e 𝒫 S e ω Disj g e g M S e * f e M S f
82 snex V
83 82 a1i φ e 𝒫 S e ω Disj g e g V
84 42 adantr φ e 𝒫 S e ω Disj g e g f e M : 𝒫 Q 0 +∞
85 84 37 ffvelrnd φ e 𝒫 S e ω Disj g e g f e M f 0 +∞
86 elsni f f =
87 86 fveq2d f M f = M
88 87 43 sylan9eqr φ e 𝒫 S e ω Disj g e g f M f = 0
89 33 83 85 88 esumpad2 φ e 𝒫 S e ω Disj g e g * f e M f = * f e M f
90 neldifsnd φ e 𝒫 S e ω Disj g e g ¬ e
91 difss e e
92 ssdomg e 𝒫 S e e e e
93 33 91 92 mpisyl φ e 𝒫 S e ω Disj g e g e e
94 domtr e e e ω e ω
95 93 39 94 syl2anc φ e 𝒫 S e ω Disj g e g e ω
96 67 ssdifssd φ e 𝒫 S e ω Disj g e g e toCaraSiga M
97 simprr φ e 𝒫 S e ω Disj g e g Disj g e g
98 nfcv _ y g
99 nfcv _ g y
100 id g = y g = y
101 98 99 100 cbvdisj Disj g e g Disj y e y
102 97 101 sylib φ e 𝒫 S e ω Disj g e g Disj y e y
103 disjss1 e e Disj y e y Disj y e y
104 91 102 103 mpsyl φ e 𝒫 S e ω Disj g e g Disj y e y
105 41 42 43 56 90 95 96 104 64 carsggect φ e 𝒫 S e ω Disj g e g * f e M f M e
106 89 105 eqbrtrrd φ e 𝒫 S e ω Disj g e g * f e M f M e
107 unidif0 e = e
108 107 fveq2i M e = M e
109 106 108 breqtrdi φ e 𝒫 S e ω Disj g e g * f e M f M e
110 69 70 syl φ e 𝒫 S e ω Disj g e g M S e = M e
111 109 80 110 3brtr4d φ e 𝒫 S e ω Disj g e g * f e M S f M S e
112 81 111 jca φ e 𝒫 S e ω Disj g e g M S e * f e M S f * f e M S f M S e
113 iccssxr 0 +∞ *
114 19 ad2antrr φ e 𝒫 S e ω Disj g e g M S : S 0 +∞
115 114 69 ffvelrnd φ e 𝒫 S e ω Disj g e g M S e 0 +∞
116 113 115 sseldi φ e 𝒫 S e ω Disj g e g M S e *
117 114 adantr φ e 𝒫 S e ω Disj g e g f e M S : S 0 +∞
118 117 76 ffvelrnd φ e 𝒫 S e ω Disj g e g f e M S f 0 +∞
119 118 ralrimiva φ e 𝒫 S e ω Disj g e g f e M S f 0 +∞
120 nfcv _ f e
121 120 esumcl e 𝒫 S f e M S f 0 +∞ * f e M S f 0 +∞
122 33 119 121 syl2anc φ e 𝒫 S e ω Disj g e g * f e M S f 0 +∞
123 113 122 sseldi φ e 𝒫 S e ω Disj g e g * f e M S f *
124 xrletri3 M S e * * f e M S f * M S e = * f e M S f M S e * f e M S f * f e M S f M S e
125 116 123 124 syl2anc φ e 𝒫 S e ω Disj g e g M S e = * f e M S f M S e * f e M S f * f e M S f M S e
126 112 125 mpbird φ e 𝒫 S e ω Disj g e g M S e = * f e M S f
127 30 126 sylan2b φ e 𝒫 S e ω Disj f e f M S e = * f e M S f
128 127 ex φ e 𝒫 S e ω Disj f e f M S e = * f e M S f
129 128 ralrimiva φ e 𝒫 S e ω Disj f e f M S e = * f e M S f
130 19 25 129 3jca φ M S : S 0 +∞ M S = 0 e 𝒫 S e ω Disj f e f M S e = * f e M S f
131 16 15 20 54 62 carsgsiga φ toCaraSiga M sigAlgebra Q
132 2 131 eqeltrid φ S sigAlgebra Q
133 elrnsiga S sigAlgebra Q S ran sigAlgebra
134 ismeas S ran sigAlgebra M S measures S M S : S 0 +∞ M S = 0 e 𝒫 S e ω Disj f e f M S e = * f e M S f
135 132 133 134 3syl φ M S measures S M S : S 0 +∞ M S = 0 e 𝒫 S e ω Disj f e f M S e = * f e M S f
136 130 135 mpbird φ M S measures S