Metamath Proof Explorer


Theorem phpreu

Description: Theorem related to pigeonhole principle. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Assertion phpreu AFinABxAyBx=CxA∃!yBx=C

Proof

Step Hyp Ref Expression
1 eleq1 x=CxACA
2 1 biimpac xAx=CCA
3 rabid yyB|CAyBCA
4 3 simplbi2com CAyByyB|CA
5 2 4 syl xAx=CyByyB|CA
6 5 impancom xAyBx=CyyB|CA
7 6 ancrd xAyBx=CyyB|CAx=C
8 7 expimpd xAyBx=CyyB|CAx=C
9 8 reximdv2 xAyBx=CyyB|CAx=C
10 9 ralimia xAyBx=CxAyyB|CAx=C
11 3 simplbi yyB|CAyB
12 6 pm4.71rd xAyBx=CyyB|CAx=C
13 df-mpt yyB|CAC=yx|yyB|CAx=C
14 13 breqi yyyB|CACxyyx|yyB|CAx=Cx
15 df-br yyx|yyB|CAx=Cxyxyx|yyB|CAx=C
16 opabidw yxyx|yyB|CAx=CyyB|CAx=C
17 14 15 16 3bitri yyyB|CACxyyB|CAx=C
18 12 17 bitr4di xAyBx=CyyyB|CACx
19 11 18 sylan2 xAyyB|CAx=CyyyB|CACx
20 19 rexbidva xAyyB|CAx=CyyB|CAyyyB|CACx
21 20 ralbiia xAyyB|CAx=CxAyyB|CAyyyB|CACx
22 breq2 a=xbyyB|CACabyyB|CACx
23 22 rexbidv a=xbyB|CAbyyB|CACabyB|CAbyyB|CACx
24 nfcv _byB|CA
25 nfrab1 _yyB|CA
26 nfcv _yb
27 nfmpt1 _yyyB|CAC
28 nfcv _yx
29 26 27 28 nfbr ybyyB|CACx
30 nfv byyyB|CACx
31 breq1 b=ybyyB|CACxyyyB|CACx
32 24 25 29 30 31 cbvrexfw byB|CAbyyB|CACxyyB|CAyyyB|CACx
33 23 32 bitrdi a=xbyB|CAbyyB|CACayyB|CAyyyB|CACx
34 33 cbvralvw aAbyB|CAbyyB|CACaxAyyB|CAyyyB|CACx
35 21 34 bitr4i xAyyB|CAx=CaAbyB|CAbyyB|CACa
36 10 35 sylib xAyBx=CaAbyB|CAbyyB|CACa
37 nfv byyB|CAx=C
38 25 nfcri ybyB|CA
39 nfcsb1v _yb/yC
40 39 nfeq2 yx=b/yC
41 38 40 nfan ybyB|CAx=b/yC
42 eleq1 y=byyB|CAbyB|CA
43 csbeq1a y=bC=b/yC
44 43 eqeq2d y=bx=Cx=b/yC
45 42 44 anbi12d y=byyB|CAx=CbyB|CAx=b/yC
46 37 41 45 cbvopab1 yx|yyB|CAx=C=bx|byB|CAx=b/yC
47 df-mpt byB|CAb/yC=bx|byB|CAx=b/yC
48 46 13 47 3eqtr4i yyB|CAC=byB|CAb/yC
49 nfcv _yB
50 39 nfel1 yb/yCA
51 43 eleq1d y=bCAb/yCA
52 26 49 50 51 elrabf byB|CAbBb/yCA
53 52 simprbi byB|CAb/yCA
54 48 53 fmpti yyB|CAC:yB|CAA
55 36 54 jctil xAyBx=CyyB|CAC:yB|CAAaAbyB|CAbyyB|CACa
56 dffo4 yyB|CAC:yB|CAontoAyyB|CAC:yB|CAAaAbyB|CAbyyB|CACa
57 55 56 sylibr xAyBx=CyyB|CAC:yB|CAontoA
58 57 adantl AFinABxAyBx=CyyB|CAC:yB|CAontoA
59 relen Rel
60 59 brrelex2i ABBV
61 ssrab2 yB|CAB
62 ssdomg BVyB|CAByB|CAB
63 60 61 62 mpisyl AByB|CAB
64 ensym ABBA
65 domentr yB|CABBAyB|CAA
66 63 64 65 syl2anc AByB|CAA
67 66 ad2antlr AFinABxAyBx=CyB|CAA
68 enfi ABAFinBFin
69 68 biimpac AFinABBFin
70 rabfi BFinyB|CAFin
71 69 70 syl AFinAByB|CAFin
72 fodomfi yB|CAFinyyB|CAC:yB|CAontoAAyB|CA
73 71 57 72 syl2an AFinABxAyBx=CAyB|CA
74 sbth yB|CAAAyB|CAyB|CAA
75 67 73 74 syl2anc AFinABxAyBx=CyB|CAA
76 simpll AFinABxAyBx=CAFin
77 fofinf1o yyB|CAC:yB|CAontoAyB|CAAAFinyyB|CAC:yB|CA1-1 ontoA
78 58 75 76 77 syl3anc AFinABxAyBx=CyyB|CAC:yB|CA1-1 ontoA
79 f1of1 yyB|CAC:yB|CA1-1 ontoAyyB|CAC:yB|CA1-1A
80 78 79 syl AFinABxAyBx=CyyB|CAC:yB|CA1-1A
81 dff12 yyB|CAC:yB|CA1-1AyyB|CAC:yB|CAAa*bbyyB|CACa
82 81 simprbi yyB|CAC:yB|CA1-1Aa*bbyyB|CACa
83 22 mobidv a=x*bbyyB|CACa*bbyyB|CACx
84 29 30 31 cbvmow *bbyyB|CACx*yyyyB|CACx
85 83 84 bitrdi a=x*bbyyB|CACa*yyyyB|CACx
86 85 cbvalvw a*bbyyB|CACax*yyyyB|CACx
87 82 86 sylib yyB|CAC:yB|CA1-1Ax*yyyyB|CACx
88 mormo *yyyyB|CACx*yByyyB|CACx
89 88 alimi x*yyyyB|CACxx*yByyyB|CACx
90 alral x*yByyyB|CACxxA*yByyyB|CACx
91 80 87 89 90 4syl AFinABxAyBx=CxA*yByyyB|CACx
92 18 rmobidva xA*yBx=C*yByyyB|CACx
93 92 ralbiia xA*yBx=CxA*yByyyB|CACx
94 91 93 sylibr AFinABxAyBx=CxA*yBx=C
95 94 ex AFinABxAyBx=CxA*yBx=C
96 95 pm4.71d AFinABxAyBx=CxAyBx=CxA*yBx=C
97 reu5 ∃!yBx=CyBx=C*yBx=C
98 97 ralbii xA∃!yBx=CxAyBx=C*yBx=C
99 r19.26 xAyBx=C*yBx=CxAyBx=CxA*yBx=C
100 98 99 bitri xA∃!yBx=CxAyBx=CxA*yBx=C
101 96 100 bitr4di AFinABxAyBx=CxA∃!yBx=C