Metamath Proof Explorer


Theorem pmatcollpw3lem

Description: Lemma for pmatcollpw3 and pmatcollpw3fi : Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P=Poly1R
pmatcollpw.c C=NMatP
pmatcollpw.b B=BaseC
pmatcollpw.m ˙=C
pmatcollpw.e ×˙=mulGrpP
pmatcollpw.x X=var1R
pmatcollpw.t T=NmatToPolyMatR
pmatcollpw3.a A=NMatR
pmatcollpw3.d D=BaseA
Assertion pmatcollpw3lem NFinRCRingMBI0IM=CnIn×˙X˙TMdecompPMatnfDIM=CnIn×˙X˙Tfn

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P=Poly1R
2 pmatcollpw.c C=NMatP
3 pmatcollpw.b B=BaseC
4 pmatcollpw.m ˙=C
5 pmatcollpw.e ×˙=mulGrpP
6 pmatcollpw.x X=var1R
7 pmatcollpw.t T=NmatToPolyMatR
8 pmatcollpw3.a A=NMatR
9 pmatcollpw3.d D=BaseA
10 dmeq x=ydomx=domy
11 10 dmeqd x=ydomdomx=domdomy
12 oveq x=yixj=iyj
13 12 fveq2d x=ycoe1ixj=coe1iyj
14 13 fveq1d x=ycoe1ixjk=coe1iyjk
15 11 11 14 mpoeq123dv x=yidomdomx,jdomdomxcoe1ixjk=idomdomy,jdomdomycoe1iyjk
16 fveq2 k=lcoe1iyjk=coe1iyjl
17 16 mpoeq3dv k=lidomdomy,jdomdomycoe1iyjk=idomdomy,jdomdomycoe1iyjl
18 15 17 cbvmpov xB,kIidomdomx,jdomdomxcoe1ixjk=yB,lIidomdomy,jdomdomycoe1iyjl
19 dmexg yBdomyV
20 19 dmexd yBdomdomyV
21 20 20 jca yBdomdomyVdomdomyV
22 21 ad2antrl NFinRCRingMBI0IyBlIdomdomyVdomdomyV
23 mpoexga domdomyVdomdomyVidomdomy,jdomdomycoe1iyjlV
24 22 23 syl NFinRCRingMBI0IyBlIidomdomy,jdomdomycoe1iyjlV
25 24 ralrimivva NFinRCRingMBI0IyBlIidomdomy,jdomdomycoe1iyjlV
26 simprr NFinRCRingMBI0II
27 nn0ex 0V
28 27 ssex I0IV
29 28 ad2antrl NFinRCRingMBI0IIV
30 simp3 NFinRCRingMBMB
31 30 adantr NFinRCRingMBI0IMB
32 18 25 26 29 31 mpocurryvald NFinRCRingMBI0IcurryxB,kIidomdomx,jdomdomxcoe1ixjkM=lIM/yidomdomy,jdomdomycoe1iyjl
33 fveq2 l=kcoe1iyjl=coe1iyjk
34 33 mpoeq3dv l=kidomdomy,jdomdomycoe1iyjl=idomdomy,jdomdomycoe1iyjk
35 34 csbeq2dv l=kM/yidomdomy,jdomdomycoe1iyjl=M/yidomdomy,jdomdomycoe1iyjk
36 eqcom x=yy=x
37 eqcom idomdomx,jdomdomxcoe1ixjk=idomdomy,jdomdomycoe1iyjkidomdomy,jdomdomycoe1iyjk=idomdomx,jdomdomxcoe1ixjk
38 15 36 37 3imtr3i y=xidomdomy,jdomdomycoe1iyjk=idomdomx,jdomdomxcoe1ixjk
39 38 cbvcsbv M/yidomdomy,jdomdomycoe1iyjk=M/xidomdomx,jdomdomxcoe1ixjk
40 35 39 eqtrdi l=kM/yidomdomy,jdomdomycoe1iyjl=M/xidomdomx,jdomdomxcoe1ixjk
41 40 cbvmptv lIM/yidomdomy,jdomdomycoe1iyjl=kIM/xidomdomx,jdomdomxcoe1ixjk
42 32 41 eqtrdi NFinRCRingMBI0IcurryxB,kIidomdomx,jdomdomxcoe1ixjkM=kIM/xidomdomx,jdomdomxcoe1ixjk
43 dmeq x=Mdomx=domM
44 43 dmeqd x=Mdomdomx=domdomM
45 oveq x=Mixj=iMj
46 45 fveq2d x=Mcoe1ixj=coe1iMj
47 46 fveq1d x=Mcoe1ixjk=coe1iMjk
48 44 44 47 mpoeq123dv x=Midomdomx,jdomdomxcoe1ixjk=idomdomM,jdomdomMcoe1iMjk
49 48 adantl NFinRCRingMBx=Midomdomx,jdomdomxcoe1ixjk=idomdomM,jdomdomMcoe1iMjk
50 30 49 csbied NFinRCRingMBM/xidomdomx,jdomdomxcoe1ixjk=idomdomM,jdomdomMcoe1iMjk
51 eqid BaseP=BaseP
52 2 51 3 matbas2i MBMBasePN×N
53 elmapi MBasePN×NM:N×NBaseP
54 fdm M:N×NBasePdomM=N×N
55 54 dmeqd M:N×NBasePdomdomM=domN×N
56 dmxpid domN×N=N
57 55 56 eqtr2di M:N×NBasePN=domdomM
58 52 53 57 3syl MBN=domdomM
59 58 3ad2ant3 NFinRCRingMBN=domdomM
60 59 adantr NFinRCRingMBm=MN=domdomM
61 simpr NFinRCRingMBm=Mm=M
62 61 oveqd NFinRCRingMBm=Mimj=iMj
63 62 fveq2d NFinRCRingMBm=Mcoe1imj=coe1iMj
64 63 fveq1d NFinRCRingMBm=Mcoe1imjk=coe1iMjk
65 60 60 64 mpoeq123dv NFinRCRingMBm=MiN,jNcoe1imjk=idomdomM,jdomdomMcoe1iMjk
66 30 65 csbied NFinRCRingMBM/miN,jNcoe1imjk=idomdomM,jdomdomMcoe1iMjk
67 50 66 eqtr4d NFinRCRingMBM/xidomdomx,jdomdomxcoe1ixjk=M/miN,jNcoe1imjk
68 67 adantr NFinRCRingMBI0IM/xidomdomx,jdomdomxcoe1ixjk=M/miN,jNcoe1imjk
69 68 mpteq2dv NFinRCRingMBI0IkIM/xidomdomx,jdomdomxcoe1ixjk=kIM/miN,jNcoe1imjk
70 42 69 eqtrd NFinRCRingMBI0IcurryxB,kIidomdomx,jdomdomxcoe1ixjkM=kIM/miN,jNcoe1imjk
71 oveq m=Mimj=iMj
72 71 adantl NFinRCRingMBm=Mimj=iMj
73 72 fveq2d NFinRCRingMBm=Mcoe1imj=coe1iMj
74 73 fveq1d NFinRCRingMBm=Mcoe1imjk=coe1iMjk
75 74 mpoeq3dv NFinRCRingMBm=MiN,jNcoe1imjk=iN,jNcoe1iMjk
76 30 75 csbied NFinRCRingMBM/miN,jNcoe1imjk=iN,jNcoe1iMjk
77 76 ad2antrr NFinRCRingMBI0IkIM/miN,jNcoe1imjk=iN,jNcoe1iMjk
78 eqid BaseR=BaseR
79 simpll1 NFinRCRingMBI0IkINFin
80 simpll2 NFinRCRingMBI0IkIRCRing
81 simp2 NFinRCRingMBI0IkIiNjNiN
82 simp3 NFinRCRingMBI0IkIiNjNjN
83 31 adantr NFinRCRingMBI0IkIMB
84 83 3ad2ant1 NFinRCRingMBI0IkIiNjNMB
85 2 51 3 81 82 84 matecld NFinRCRingMBI0IkIiNjNiMjBaseP
86 ssel I0kIk0
87 86 ad2antrl NFinRCRingMBI0IkIk0
88 87 imp NFinRCRingMBI0IkIk0
89 88 3ad2ant1 NFinRCRingMBI0IkIiNjNk0
90 eqid coe1iMj=coe1iMj
91 90 51 1 78 coe1fvalcl iMjBasePk0coe1iMjkBaseR
92 85 89 91 syl2anc NFinRCRingMBI0IkIiNjNcoe1iMjkBaseR
93 8 78 9 79 80 92 matbas2d NFinRCRingMBI0IkIiN,jNcoe1iMjkD
94 77 93 eqeltrd NFinRCRingMBI0IkIM/miN,jNcoe1imjkD
95 94 fmpttd NFinRCRingMBI0IkIM/miN,jNcoe1imjk:ID
96 9 fvexi DV
97 96 a1i NFinRCRingMBDV
98 28 adantr I0IIV
99 elmapg DVIVkIM/miN,jNcoe1imjkDIkIM/miN,jNcoe1imjk:ID
100 97 98 99 syl2an NFinRCRingMBI0IkIM/miN,jNcoe1imjkDIkIM/miN,jNcoe1imjk:ID
101 95 100 mpbird NFinRCRingMBI0IkIM/miN,jNcoe1imjkDI
102 70 101 eqeltrd NFinRCRingMBI0IcurryxB,kIidomdomx,jdomdomxcoe1ixjkMDI
103 fveq1 f=curryxB,kIidomdomx,jdomdomxcoe1ixjkMfn=curryxB,kIidomdomx,jdomdomxcoe1ixjkMn
104 103 adantl NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMfn=curryxB,kIidomdomx,jdomdomxcoe1ixjkMn
105 104 adantr NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMnIfn=curryxB,kIidomdomx,jdomdomxcoe1ixjkMn
106 eqid xB,kIidomdomx,jdomdomxcoe1ixjk=xB,kIidomdomx,jdomdomxcoe1ixjk
107 dmexg xBdomxV
108 107 dmexd xBdomdomxV
109 108 108 jca xBdomdomxVdomdomxV
110 109 ad2antrl NFinRCRingMBI0InIxBkIdomdomxVdomdomxV
111 mpoexga domdomxVdomdomxVidomdomx,jdomdomxcoe1ixjkV
112 110 111 syl NFinRCRingMBI0InIxBkIidomdomx,jdomdomxcoe1ixjkV
113 112 ralrimivva NFinRCRingMBI0InIxBkIidomdomx,jdomdomxcoe1ixjkV
114 29 adantr NFinRCRingMBI0InIIV
115 31 adantr NFinRCRingMBI0InIMB
116 simpr NFinRCRingMBI0InInI
117 106 113 114 115 116 fvmpocurryd NFinRCRingMBI0InIcurryxB,kIidomdomx,jdomdomxcoe1ixjkMn=MxB,kIidomdomx,jdomdomxcoe1ixjkn
118 df-decpmat decompPMat=xV,k0idomdomx,jdomdomxcoe1ixjk
119 118 reseq1i decompPMatB×I=xV,k0idomdomx,jdomdomxcoe1ixjkB×I
120 ssv BV
121 120 a1i NFinRCRingMBBV
122 simpl I0II0
123 121 122 anim12i NFinRCRingMBI0IBVI0
124 123 adantr NFinRCRingMBI0InIBVI0
125 resmpo BVI0xV,k0idomdomx,jdomdomxcoe1ixjkB×I=xB,kIidomdomx,jdomdomxcoe1ixjk
126 124 125 syl NFinRCRingMBI0InIxV,k0idomdomx,jdomdomxcoe1ixjkB×I=xB,kIidomdomx,jdomdomxcoe1ixjk
127 119 126 eqtr2id NFinRCRingMBI0InIxB,kIidomdomx,jdomdomxcoe1ixjk=decompPMatB×I
128 127 oveqd NFinRCRingMBI0InIMxB,kIidomdomx,jdomdomxcoe1ixjkn=MdecompPMatB×In
129 117 128 eqtrd NFinRCRingMBI0InIcurryxB,kIidomdomx,jdomdomxcoe1ixjkMn=MdecompPMatB×In
130 129 adantlr NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMnIcurryxB,kIidomdomx,jdomdomxcoe1ixjkMn=MdecompPMatB×In
131 105 130 eqtrd NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMnIfn=MdecompPMatB×In
132 131 fveq2d NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMnITfn=TMdecompPMatB×In
133 30 ad2antrr NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMMB
134 ovres MBnIMdecompPMatB×In=MdecompPMatn
135 133 134 sylan NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMnIMdecompPMatB×In=MdecompPMatn
136 135 fveq2d NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMnITMdecompPMatB×In=TMdecompPMatn
137 132 136 eqtrd NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMnITfn=TMdecompPMatn
138 137 oveq2d NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMnIn×˙X˙Tfn=n×˙X˙TMdecompPMatn
139 138 mpteq2dva NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMnIn×˙X˙Tfn=nIn×˙X˙TMdecompPMatn
140 139 oveq2d NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMCnIn×˙X˙Tfn=CnIn×˙X˙TMdecompPMatn
141 140 eqeq2d NFinRCRingMBI0If=curryxB,kIidomdomx,jdomdomxcoe1ixjkMM=CnIn×˙X˙TfnM=CnIn×˙X˙TMdecompPMatn
142 102 141 rspcedv NFinRCRingMBI0IM=CnIn×˙X˙TMdecompPMatnfDIM=CnIn×˙X˙Tfn