Metamath Proof Explorer


Theorem pntrsumbnd2

Description: A bound on a sum over R . Equation 10.1.16 of Shapiro, p. 403. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Hypothesis pntrval.r R=a+ψaa
Assertion pntrsumbnd2 c+kmn=kmRnnn+1c

Proof

Step Hyp Ref Expression
1 pntrval.r R=a+ψaa
2 1 pntrsumbnd b+mn=1mRnnn+1b
3 2rp 2+
4 rpmulcl 2+b+2b+
5 3 4 mpan b+2b+
6 oveq2 m=k11m=1k1
7 6 sumeq1d m=k1n=1mRnnn+1=n=1k1Rnnn+1
8 7 fveq2d m=k1n=1mRnnn+1=n=1k1Rnnn+1
9 8 breq1d m=k1n=1mRnnn+1bn=1k1Rnnn+1b
10 simplr b+mn=1mRnnn+1bkmn=1mRnnn+1b
11 nnz kk
12 11 adantl b+mn=1mRnnn+1bkk
13 peano2zm kk1
14 12 13 syl b+mn=1mRnnn+1bkk1
15 9 10 14 rspcdva b+mn=1mRnnn+1bkn=1k1Rnnn+1b
16 5 ad2antrr b+km2b+
17 16 rpge0d b+km02b
18 sumeq1 km=n=kmRnnn+1=nRnnn+1
19 sum0 nRnnn+1=0
20 18 19 eqtrdi km=n=kmRnnn+1=0
21 20 abs00bd km=n=kmRnnn+1=0
22 21 breq1d km=n=kmRnnn+12b02b
23 17 22 syl5ibrcom b+kmkm=n=kmRnnn+12b
24 23 imp b+kmkm=n=kmRnnn+12b
25 24 a1d b+kmkm=n=1k1Rnnn+1bn=1mRnnn+1bn=kmRnnn+12b
26 fzn0 kmmk
27 fzfid b+kmmk1mFin
28 elfznn n1mn
29 simpr b+kmmknn
30 29 nnrpd b+kmmknn+
31 1 pntrf R:+
32 31 ffvelcdmi n+Rn
33 30 32 syl b+kmmknRn
34 29 peano2nnd b+kmmknn+1
35 29 34 nnmulcld b+kmmknnn+1
36 33 35 nndivred b+kmmknRnnn+1
37 28 36 sylan2 b+kmmkn1mRnnn+1
38 27 37 fsumrecl b+kmmkn=1mRnnn+1
39 38 recnd b+kmmkn=1mRnnn+1
40 39 abscld b+kmmkn=1mRnnn+1
41 fzfid b+kmmk1k1Fin
42 elfznn n1k1n
43 42 36 sylan2 b+kmmkn1k1Rnnn+1
44 41 43 fsumrecl b+kmmkn=1k1Rnnn+1
45 44 recnd b+kmmkn=1k1Rnnn+1
46 45 abscld b+kmmkn=1k1Rnnn+1
47 simplll b+kmmkb+
48 47 rpred b+kmmkb
49 le2add n=1mRnnn+1n=1k1Rnnn+1bbn=1mRnnn+1bn=1k1Rnnn+1bn=1mRnnn+1+n=1k1Rnnn+1b+b
50 40 46 48 48 49 syl22anc b+kmmkn=1mRnnn+1bn=1k1Rnnn+1bn=1mRnnn+1+n=1k1Rnnn+1b+b
51 48 recnd b+kmmkb
52 51 2timesd b+kmmk2b=b+b
53 52 breq2d b+kmmkn=1mRnnn+1+n=1k1Rnnn+12bn=1mRnnn+1+n=1k1Rnnn+1b+b
54 fzfid b+kmmkkmFin
55 simpllr b+kmmkk
56 elfzuz nkmnk
57 eluznn knkn
58 55 56 57 syl2an b+kmmknkmn
59 58 36 syldan b+kmmknkmRnnn+1
60 54 59 fsumrecl b+kmmkn=kmRnnn+1
61 60 recnd b+kmmkn=kmRnnn+1
62 55 nnred b+kmmkk
63 62 ltm1d b+kmmkk1<k
64 fzdisj k1<k1k1km=
65 63 64 syl b+kmmk1k1km=
66 55 nncnd b+kmmkk
67 ax-1cn 1
68 npcan k1k-1+1=k
69 66 67 68 sylancl b+kmmkk-1+1=k
70 69 55 eqeltrd b+kmmkk-1+1
71 nnuz =1
72 70 71 eleqtrdi b+kmmkk-1+11
73 55 nnzd b+kmmkk
74 73 13 syl b+kmmkk1
75 simplr b+kmk
76 75 nncnd b+kmk
77 76 67 68 sylancl b+kmk-1+1=k
78 77 fveq2d b+kmk-1+1=k
79 78 eleq2d b+kmmk-1+1mk
80 79 biimpar b+kmmkmk-1+1
81 peano2uzr k1mk-1+1mk1
82 74 80 81 syl2anc b+kmmkmk1
83 fzsplit2 k-1+11mk11m=1k1k-1+1m
84 72 82 83 syl2anc b+kmmk1m=1k1k-1+1m
85 69 oveq1d b+kmmkk-1+1m=km
86 85 uneq2d b+kmmk1k1k-1+1m=1k1km
87 84 86 eqtrd b+kmmk1m=1k1km
88 37 recnd b+kmmkn1mRnnn+1
89 65 87 27 88 fsumsplit b+kmmkn=1mRnnn+1=n=1k1Rnnn+1+n=kmRnnn+1
90 45 61 89 mvrladdd b+kmmkn=1mRnnn+1n=1k1Rnnn+1=n=kmRnnn+1
91 90 fveq2d b+kmmkn=1mRnnn+1n=1k1Rnnn+1=n=kmRnnn+1
92 39 45 abs2dif2d b+kmmkn=1mRnnn+1n=1k1Rnnn+1n=1mRnnn+1+n=1k1Rnnn+1
93 91 92 eqbrtrrd b+kmmkn=kmRnnn+1n=1mRnnn+1+n=1k1Rnnn+1
94 61 abscld b+kmmkn=kmRnnn+1
95 40 46 readdcld b+kmmkn=1mRnnn+1+n=1k1Rnnn+1
96 2re 2
97 96 a1i b+kmmk2
98 97 48 remulcld b+kmmk2b
99 letr n=kmRnnn+1n=1mRnnn+1+n=1k1Rnnn+12bn=kmRnnn+1n=1mRnnn+1+n=1k1Rnnn+1n=1mRnnn+1+n=1k1Rnnn+12bn=kmRnnn+12b
100 94 95 98 99 syl3anc b+kmmkn=kmRnnn+1n=1mRnnn+1+n=1k1Rnnn+1n=1mRnnn+1+n=1k1Rnnn+12bn=kmRnnn+12b
101 93 100 mpand b+kmmkn=1mRnnn+1+n=1k1Rnnn+12bn=kmRnnn+12b
102 53 101 sylbird b+kmmkn=1mRnnn+1+n=1k1Rnnn+1b+bn=kmRnnn+12b
103 50 102 syld b+kmmkn=1mRnnn+1bn=1k1Rnnn+1bn=kmRnnn+12b
104 103 ancomsd b+kmmkn=1k1Rnnn+1bn=1mRnnn+1bn=kmRnnn+12b
105 26 104 sylan2b b+kmkmn=1k1Rnnn+1bn=1mRnnn+1bn=kmRnnn+12b
106 25 105 pm2.61dane b+kmn=1k1Rnnn+1bn=1mRnnn+1bn=kmRnnn+12b
107 106 imp b+kmn=1k1Rnnn+1bn=1mRnnn+1bn=kmRnnn+12b
108 107 an4s b+kn=1k1Rnnn+1bmn=1mRnnn+1bn=kmRnnn+12b
109 108 expr b+kn=1k1Rnnn+1bmn=1mRnnn+1bn=kmRnnn+12b
110 109 ralimdva b+kn=1k1Rnnn+1bmn=1mRnnn+1bmn=kmRnnn+12b
111 110 impancom b+kmn=1mRnnn+1bn=1k1Rnnn+1bmn=kmRnnn+12b
112 111 an32s b+mn=1mRnnn+1bkn=1k1Rnnn+1bmn=kmRnnn+12b
113 15 112 mpd b+mn=1mRnnn+1bkmn=kmRnnn+12b
114 113 ralrimiva b+mn=1mRnnn+1bkmn=kmRnnn+12b
115 breq2 c=2bn=kmRnnn+1cn=kmRnnn+12b
116 115 2ralbidv c=2bkmn=kmRnnn+1ckmn=kmRnnn+12b
117 116 rspcev 2b+kmn=kmRnnn+12bc+kmn=kmRnnn+1c
118 5 114 117 syl2an2r b+mn=1mRnnn+1bc+kmn=kmRnnn+1c
119 118 rexlimiva b+mn=1mRnnn+1bc+kmn=kmRnnn+1c
120 2 119 ax-mp c+kmn=kmRnnn+1c