Metamath Proof Explorer


Theorem prdsbl

Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld ) - for a counterexample the point p in RR ^ NN whose n -th coordinate is 1 - 1 / n is in X_ n e. NN ball ( 0 , 1 ) but is not in the 1 -ball of the product (since d ( 0 , p ) = 1 ).

The last assumption, 0 < A , is needed only in the case I = (/) , when the right side evaluates to { (/) } and the left evaluates to (/) if A <_ 0 and { (/) } if 0 < A . (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses prdsbl.y ⊒Y=S⨉𝑠x∈I⟼R
prdsbl.b ⊒B=BaseY
prdsbl.v ⊒V=BaseR
prdsbl.e ⊒E=dist⁑Rβ†ΎVΓ—V
prdsbl.d ⊒D=dist⁑Y
prdsbl.s βŠ’Ο†β†’S∈W
prdsbl.i βŠ’Ο†β†’I∈Fin
prdsbl.r βŠ’Ο†βˆ§x∈Iβ†’R∈Z
prdsbl.m βŠ’Ο†βˆ§x∈Iβ†’E∈∞Met⁑V
prdsbl.p βŠ’Ο†β†’P∈B
prdsbl.a βŠ’Ο†β†’Aβˆˆβ„*
prdsbl.g βŠ’Ο†β†’0<A
Assertion prdsbl βŠ’Ο†β†’Pball⁑DA=⨉x∈IP⁑xball⁑EA

Proof

Step Hyp Ref Expression
1 prdsbl.y ⊒Y=S⨉𝑠x∈I⟼R
2 prdsbl.b ⊒B=BaseY
3 prdsbl.v ⊒V=BaseR
4 prdsbl.e ⊒E=dist⁑Rβ†ΎVΓ—V
5 prdsbl.d ⊒D=dist⁑Y
6 prdsbl.s βŠ’Ο†β†’S∈W
7 prdsbl.i βŠ’Ο†β†’I∈Fin
8 prdsbl.r βŠ’Ο†βˆ§x∈Iβ†’R∈Z
9 prdsbl.m βŠ’Ο†βˆ§x∈Iβ†’E∈∞Met⁑V
10 prdsbl.p βŠ’Ο†β†’P∈B
11 prdsbl.a βŠ’Ο†β†’Aβˆˆβ„*
12 prdsbl.g βŠ’Ο†β†’0<A
13 8 ralrimiva βŠ’Ο†β†’βˆ€x∈IR∈Z
14 1 2 6 7 13 3 prdsbas3 βŠ’Ο†β†’B=⨉x∈IV
15 14 eleq2d βŠ’Ο†β†’f∈B↔fβˆˆβ¨‰x∈IV
16 15 biimpa βŠ’Ο†βˆ§f∈Bβ†’fβˆˆβ¨‰x∈IV
17 ixpfn ⊒fβˆˆβ¨‰x∈IVβ†’fFnI
18 vex ⊒f∈V
19 18 elixp ⊒fβˆˆβ¨‰x∈IP⁑xball⁑EA↔fFnIβˆ§βˆ€x∈If⁑x∈P⁑xball⁑EA
20 19 baib ⊒fFnIβ†’fβˆˆβ¨‰x∈IP⁑xball⁑EAβ†”βˆ€x∈If⁑x∈P⁑xball⁑EA
21 16 17 20 3syl βŠ’Ο†βˆ§f∈Bβ†’fβˆˆβ¨‰x∈IP⁑xball⁑EAβ†”βˆ€x∈If⁑x∈P⁑xball⁑EA
22 9 adantlr βŠ’Ο†βˆ§f∈B∧x∈Iβ†’E∈∞Met⁑V
23 11 ad2antrr βŠ’Ο†βˆ§f∈B∧x∈Iβ†’Aβˆˆβ„*
24 1 2 6 7 13 3 10 prdsbascl βŠ’Ο†β†’βˆ€x∈IP⁑x∈V
25 24 adantr βŠ’Ο†βˆ§f∈Bβ†’βˆ€x∈IP⁑x∈V
26 25 r19.21bi βŠ’Ο†βˆ§f∈B∧x∈Iβ†’P⁑x∈V
27 6 adantr βŠ’Ο†βˆ§f∈Bβ†’S∈W
28 7 adantr βŠ’Ο†βˆ§f∈Bβ†’I∈Fin
29 13 adantr βŠ’Ο†βˆ§f∈Bβ†’βˆ€x∈IR∈Z
30 simpr βŠ’Ο†βˆ§f∈Bβ†’f∈B
31 1 2 27 28 29 3 30 prdsbascl βŠ’Ο†βˆ§f∈Bβ†’βˆ€x∈If⁑x∈V
32 31 r19.21bi βŠ’Ο†βˆ§f∈B∧x∈Iβ†’f⁑x∈V
33 elbl2 ⊒E∈∞Met⁑V∧Aβˆˆβ„*∧P⁑x∈V∧f⁑x∈Vβ†’f⁑x∈P⁑xball⁑EA↔P⁑xEf⁑x<A
34 22 23 26 32 33 syl22anc βŠ’Ο†βˆ§f∈B∧x∈Iβ†’f⁑x∈P⁑xball⁑EA↔P⁑xEf⁑x<A
35 34 ralbidva βŠ’Ο†βˆ§f∈Bβ†’βˆ€x∈If⁑x∈P⁑xball⁑EAβ†”βˆ€x∈IP⁑xEf⁑x<A
36 xmetcl ⊒E∈∞Met⁑V∧P⁑x∈V∧f⁑x∈Vβ†’P⁑xEf⁑xβˆˆβ„*
37 22 26 32 36 syl3anc βŠ’Ο†βˆ§f∈B∧x∈Iβ†’P⁑xEf⁑xβˆˆβ„*
38 37 ralrimiva βŠ’Ο†βˆ§f∈Bβ†’βˆ€x∈IP⁑xEf⁑xβˆˆβ„*
39 eqid ⊒x∈I⟼P⁑xEf⁑x=x∈I⟼P⁑xEf⁑x
40 breq1 ⊒z=P⁑xEf⁑xβ†’z<A↔P⁑xEf⁑x<A
41 39 40 ralrnmptw βŠ’βˆ€x∈IP⁑xEf⁑xβˆˆβ„*β†’βˆ€z∈ran⁑x∈I⟼P⁑xEf⁑xz<Aβ†”βˆ€x∈IP⁑xEf⁑x<A
42 38 41 syl βŠ’Ο†βˆ§f∈Bβ†’βˆ€z∈ran⁑x∈I⟼P⁑xEf⁑xz<Aβ†”βˆ€x∈IP⁑xEf⁑x<A
43 12 adantr βŠ’Ο†βˆ§f∈Bβ†’0<A
44 c0ex ⊒0∈V
45 breq1 ⊒z=0β†’z<A↔0<A
46 44 45 ralsn βŠ’βˆ€z∈0z<A↔0<A
47 43 46 sylibr βŠ’Ο†βˆ§f∈Bβ†’βˆ€z∈0z<A
48 ralunb βŠ’βˆ€z∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0z<Aβ†”βˆ€z∈ran⁑x∈I⟼P⁑xEf⁑xz<Aβˆ§βˆ€z∈0z<A
49 10 adantr βŠ’Ο†βˆ§f∈Bβ†’P∈B
50 1 2 27 28 29 49 30 3 4 5 prdsdsval3 βŠ’Ο†βˆ§f∈Bβ†’PDf=supran⁑x∈I⟼P⁑xEf⁑xβˆͺ0ℝ*<
51 xrltso ⊒<Orℝ*
52 51 a1i βŠ’Ο†βˆ§f∈Bβ†’<Orℝ*
53 39 rnmpt ⊒ran⁑x∈I⟼P⁑xEf⁑x=y|βˆƒx∈Iy=P⁑xEf⁑x
54 abrexfi ⊒I∈Finβ†’y|βˆƒx∈Iy=P⁑xEf⁑x∈Fin
55 53 54 eqeltrid ⊒I∈Finβ†’ran⁑x∈I⟼P⁑xEf⁑x∈Fin
56 28 55 syl βŠ’Ο†βˆ§f∈Bβ†’ran⁑x∈I⟼P⁑xEf⁑x∈Fin
57 snfi ⊒0∈Fin
58 unfi ⊒ran⁑x∈I⟼P⁑xEf⁑x∈Fin∧0∈Finβ†’ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0∈Fin
59 56 57 58 sylancl βŠ’Ο†βˆ§f∈Bβ†’ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0∈Fin
60 ssun2 ⊒0βŠ†ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0
61 44 snss ⊒0∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0↔0βŠ†ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0
62 60 61 mpbir ⊒0∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0
63 ne0i ⊒0∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0β†’ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0β‰ βˆ…
64 62 63 mp1i βŠ’Ο†βˆ§f∈Bβ†’ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0β‰ βˆ…
65 37 fmpttd βŠ’Ο†βˆ§f∈Bβ†’x∈I⟼P⁑xEf⁑x:IβŸΆβ„*
66 65 frnd βŠ’Ο†βˆ§f∈Bβ†’ran⁑x∈I⟼P⁑xEf⁑xβŠ†β„*
67 0xr ⊒0βˆˆβ„*
68 67 a1i βŠ’Ο†βˆ§f∈Bβ†’0βˆˆβ„*
69 68 snssd βŠ’Ο†βˆ§f∈Bβ†’0βŠ†β„*
70 66 69 unssd βŠ’Ο†βˆ§f∈Bβ†’ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0βŠ†β„*
71 fisupcl ⊒<Orℝ*∧ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0∈Fin∧ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0β‰ βˆ…βˆ§ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0βŠ†β„*β†’supran⁑x∈I⟼P⁑xEf⁑xβˆͺ0ℝ*<∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0
72 52 59 64 70 71 syl13anc βŠ’Ο†βˆ§f∈Bβ†’supran⁑x∈I⟼P⁑xEf⁑xβˆͺ0ℝ*<∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0
73 50 72 eqeltrd βŠ’Ο†βˆ§f∈Bβ†’PDf∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0
74 breq1 ⊒z=PDfβ†’z<A↔PDf<A
75 74 rspcv ⊒PDf∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0β†’βˆ€z∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0z<Aβ†’PDf<A
76 73 75 syl βŠ’Ο†βˆ§f∈Bβ†’βˆ€z∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0z<Aβ†’PDf<A
77 48 76 biimtrrid βŠ’Ο†βˆ§f∈Bβ†’βˆ€z∈ran⁑x∈I⟼P⁑xEf⁑xz<Aβˆ§βˆ€z∈0z<Aβ†’PDf<A
78 47 77 mpan2d βŠ’Ο†βˆ§f∈Bβ†’βˆ€z∈ran⁑x∈I⟼P⁑xEf⁑xz<Aβ†’PDf<A
79 42 78 sylbird βŠ’Ο†βˆ§f∈Bβ†’βˆ€x∈IP⁑xEf⁑x<Aβ†’PDf<A
80 ssun1 ⊒ran⁑x∈I⟼P⁑xEf⁑xβŠ†ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0
81 ovex ⊒P⁑xEf⁑x∈V
82 81 elabrex ⊒x∈Iβ†’P⁑xEf⁑x∈y|βˆƒx∈Iy=P⁑xEf⁑x
83 82 adantl βŠ’Ο†βˆ§f∈B∧x∈Iβ†’P⁑xEf⁑x∈y|βˆƒx∈Iy=P⁑xEf⁑x
84 83 53 eleqtrrdi βŠ’Ο†βˆ§f∈B∧x∈Iβ†’P⁑xEf⁑x∈ran⁑x∈I⟼P⁑xEf⁑x
85 80 84 sselid βŠ’Ο†βˆ§f∈B∧x∈Iβ†’P⁑xEf⁑x∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0
86 supxrub ⊒ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0βŠ†β„*∧P⁑xEf⁑x∈ran⁑x∈I⟼P⁑xEf⁑xβˆͺ0β†’P⁑xEf⁑x≀supran⁑x∈I⟼P⁑xEf⁑xβˆͺ0ℝ*<
87 70 85 86 syl2an2r βŠ’Ο†βˆ§f∈B∧x∈Iβ†’P⁑xEf⁑x≀supran⁑x∈I⟼P⁑xEf⁑xβˆͺ0ℝ*<
88 50 adantr βŠ’Ο†βˆ§f∈B∧x∈Iβ†’PDf=supran⁑x∈I⟼P⁑xEf⁑xβˆͺ0ℝ*<
89 87 88 breqtrrd βŠ’Ο†βˆ§f∈B∧x∈Iβ†’P⁑xEf⁑x≀PDf
90 1 2 3 4 5 6 7 8 9 prdsxmet βŠ’Ο†β†’D∈∞Met⁑B
91 90 ad2antrr βŠ’Ο†βˆ§f∈B∧x∈Iβ†’D∈∞Met⁑B
92 10 ad2antrr βŠ’Ο†βˆ§f∈B∧x∈Iβ†’P∈B
93 30 adantr βŠ’Ο†βˆ§f∈B∧x∈Iβ†’f∈B
94 xmetcl ⊒D∈∞Met⁑B∧P∈B∧f∈Bβ†’PDfβˆˆβ„*
95 91 92 93 94 syl3anc βŠ’Ο†βˆ§f∈B∧x∈Iβ†’PDfβˆˆβ„*
96 xrlelttr ⊒P⁑xEf⁑xβˆˆβ„*∧PDfβˆˆβ„*∧Aβˆˆβ„*β†’P⁑xEf⁑x≀PDf∧PDf<Aβ†’P⁑xEf⁑x<A
97 37 95 23 96 syl3anc βŠ’Ο†βˆ§f∈B∧x∈Iβ†’P⁑xEf⁑x≀PDf∧PDf<Aβ†’P⁑xEf⁑x<A
98 89 97 mpand βŠ’Ο†βˆ§f∈B∧x∈Iβ†’PDf<Aβ†’P⁑xEf⁑x<A
99 98 ralrimdva βŠ’Ο†βˆ§f∈Bβ†’PDf<Aβ†’βˆ€x∈IP⁑xEf⁑x<A
100 79 99 impbid βŠ’Ο†βˆ§f∈Bβ†’βˆ€x∈IP⁑xEf⁑x<A↔PDf<A
101 21 35 100 3bitrrd βŠ’Ο†βˆ§f∈Bβ†’PDf<A↔fβˆˆβ¨‰x∈IP⁑xball⁑EA
102 101 pm5.32da βŠ’Ο†β†’f∈B∧PDf<A↔f∈B∧fβˆˆβ¨‰x∈IP⁑xball⁑EA
103 elbl ⊒D∈∞Met⁑B∧P∈B∧Aβˆˆβ„*β†’f∈Pball⁑DA↔f∈B∧PDf<A
104 90 10 11 103 syl3anc βŠ’Ο†β†’f∈Pball⁑DA↔f∈B∧PDf<A
105 24 r19.21bi βŠ’Ο†βˆ§x∈Iβ†’P⁑x∈V
106 11 adantr βŠ’Ο†βˆ§x∈Iβ†’Aβˆˆβ„*
107 blssm ⊒E∈∞Met⁑V∧P⁑x∈V∧Aβˆˆβ„*β†’P⁑xball⁑EAβŠ†V
108 9 105 106 107 syl3anc βŠ’Ο†βˆ§x∈Iβ†’P⁑xball⁑EAβŠ†V
109 108 ralrimiva βŠ’Ο†β†’βˆ€x∈IP⁑xball⁑EAβŠ†V
110 ss2ixp βŠ’βˆ€x∈IP⁑xball⁑EAβŠ†V→⨉x∈IP⁑xball⁑EAβŠ†β¨‰x∈IV
111 109 110 syl βŠ’Ο†β†’β¨‰x∈IP⁑xball⁑EAβŠ†β¨‰x∈IV
112 111 14 sseqtrrd βŠ’Ο†β†’β¨‰x∈IP⁑xball⁑EAβŠ†B
113 112 sseld βŠ’Ο†β†’fβˆˆβ¨‰x∈IP⁑xball⁑EAβ†’f∈B
114 113 pm4.71rd βŠ’Ο†β†’fβˆˆβ¨‰x∈IP⁑xball⁑EA↔f∈B∧fβˆˆβ¨‰x∈IP⁑xball⁑EA
115 102 104 114 3bitr4d βŠ’Ο†β†’f∈Pball⁑DA↔fβˆˆβ¨‰x∈IP⁑xball⁑EA
116 115 eqrdv βŠ’Ο†β†’Pball⁑DA=⨉x∈IP⁑xball⁑EA