Metamath Proof Explorer


Theorem prdsbl

Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld ) - for a counterexample the point p in RR ^ NN whose n -th coordinate is 1 - 1 / n is in X_ n e. NN ball ( 0 , 1 ) but is not in the 1 -ball of the product (since d ( 0 , p ) = 1 ).

The last assumption, 0 < A , is needed only in the case I = (/) , when the right side evaluates to { (/) } and the left evaluates to (/) if A <_ 0 and { (/) } if 0 < A . (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses prdsbl.y Y = S 𝑠 x I R
prdsbl.b B = Base Y
prdsbl.v V = Base R
prdsbl.e E = dist R V × V
prdsbl.d D = dist Y
prdsbl.s φ S W
prdsbl.i φ I Fin
prdsbl.r φ x I R Z
prdsbl.m φ x I E ∞Met V
prdsbl.p φ P B
prdsbl.a φ A *
prdsbl.g φ 0 < A
Assertion prdsbl φ P ball D A = x I P x ball E A

Proof

Step Hyp Ref Expression
1 prdsbl.y Y = S 𝑠 x I R
2 prdsbl.b B = Base Y
3 prdsbl.v V = Base R
4 prdsbl.e E = dist R V × V
5 prdsbl.d D = dist Y
6 prdsbl.s φ S W
7 prdsbl.i φ I Fin
8 prdsbl.r φ x I R Z
9 prdsbl.m φ x I E ∞Met V
10 prdsbl.p φ P B
11 prdsbl.a φ A *
12 prdsbl.g φ 0 < A
13 8 ralrimiva φ x I R Z
14 1 2 6 7 13 3 prdsbas3 φ B = x I V
15 14 eleq2d φ f B f x I V
16 15 biimpa φ f B f x I V
17 ixpfn f x I V f Fn I
18 vex f V
19 18 elixp f x I P x ball E A f Fn I x I f x P x ball E A
20 19 baib f Fn I f x I P x ball E A x I f x P x ball E A
21 16 17 20 3syl φ f B f x I P x ball E A x I f x P x ball E A
22 9 adantlr φ f B x I E ∞Met V
23 11 ad2antrr φ f B x I A *
24 1 2 6 7 13 3 10 prdsbascl φ x I P x V
25 24 adantr φ f B x I P x V
26 25 r19.21bi φ f B x I P x V
27 6 adantr φ f B S W
28 7 adantr φ f B I Fin
29 13 adantr φ f B x I R Z
30 simpr φ f B f B
31 1 2 27 28 29 3 30 prdsbascl φ f B x I f x V
32 31 r19.21bi φ f B x I f x V
33 elbl2 E ∞Met V A * P x V f x V f x P x ball E A P x E f x < A
34 22 23 26 32 33 syl22anc φ f B x I f x P x ball E A P x E f x < A
35 34 ralbidva φ f B x I f x P x ball E A x I P x E f x < A
36 xmetcl E ∞Met V P x V f x V P x E f x *
37 22 26 32 36 syl3anc φ f B x I P x E f x *
38 37 ralrimiva φ f B x I P x E f x *
39 eqid x I P x E f x = x I P x E f x
40 breq1 z = P x E f x z < A P x E f x < A
41 39 40 ralrnmptw x I P x E f x * z ran x I P x E f x z < A x I P x E f x < A
42 38 41 syl φ f B z ran x I P x E f x z < A x I P x E f x < A
43 12 adantr φ f B 0 < A
44 c0ex 0 V
45 breq1 z = 0 z < A 0 < A
46 44 45 ralsn z 0 z < A 0 < A
47 43 46 sylibr φ f B z 0 z < A
48 ralunb z ran x I P x E f x 0 z < A z ran x I P x E f x z < A z 0 z < A
49 10 adantr φ f B P B
50 1 2 27 28 29 49 30 3 4 5 prdsdsval3 φ f B P D f = sup ran x I P x E f x 0 * <
51 xrltso < Or *
52 51 a1i φ f B < Or *
53 39 rnmpt ran x I P x E f x = y | x I y = P x E f x
54 abrexfi I Fin y | x I y = P x E f x Fin
55 53 54 eqeltrid I Fin ran x I P x E f x Fin
56 28 55 syl φ f B ran x I P x E f x Fin
57 snfi 0 Fin
58 unfi ran x I P x E f x Fin 0 Fin ran x I P x E f x 0 Fin
59 56 57 58 sylancl φ f B ran x I P x E f x 0 Fin
60 ssun2 0 ran x I P x E f x 0
61 44 snss 0 ran x I P x E f x 0 0 ran x I P x E f x 0
62 60 61 mpbir 0 ran x I P x E f x 0
63 ne0i 0 ran x I P x E f x 0 ran x I P x E f x 0
64 62 63 mp1i φ f B ran x I P x E f x 0
65 37 fmpttd φ f B x I P x E f x : I *
66 65 frnd φ f B ran x I P x E f x *
67 0xr 0 *
68 67 a1i φ f B 0 *
69 68 snssd φ f B 0 *
70 66 69 unssd φ f B ran x I P x E f x 0 *
71 fisupcl < Or * ran x I P x E f x 0 Fin ran x I P x E f x 0 ran x I P x E f x 0 * sup ran x I P x E f x 0 * < ran x I P x E f x 0
72 52 59 64 70 71 syl13anc φ f B sup ran x I P x E f x 0 * < ran x I P x E f x 0
73 50 72 eqeltrd φ f B P D f ran x I P x E f x 0
74 breq1 z = P D f z < A P D f < A
75 74 rspcv P D f ran x I P x E f x 0 z ran x I P x E f x 0 z < A P D f < A
76 73 75 syl φ f B z ran x I P x E f x 0 z < A P D f < A
77 48 76 syl5bir φ f B z ran x I P x E f x z < A z 0 z < A P D f < A
78 47 77 mpan2d φ f B z ran x I P x E f x z < A P D f < A
79 42 78 sylbird φ f B x I P x E f x < A P D f < A
80 ssun1 ran x I P x E f x ran x I P x E f x 0
81 ovex P x E f x V
82 81 elabrex x I P x E f x y | x I y = P x E f x
83 82 adantl φ f B x I P x E f x y | x I y = P x E f x
84 83 53 eleqtrrdi φ f B x I P x E f x ran x I P x E f x
85 80 84 sseldi φ f B x I P x E f x ran x I P x E f x 0
86 supxrub ran x I P x E f x 0 * P x E f x ran x I P x E f x 0 P x E f x sup ran x I P x E f x 0 * <
87 70 85 86 syl2an2r φ f B x I P x E f x sup ran x I P x E f x 0 * <
88 50 adantr φ f B x I P D f = sup ran x I P x E f x 0 * <
89 87 88 breqtrrd φ f B x I P x E f x P D f
90 1 2 3 4 5 6 7 8 9 prdsxmet φ D ∞Met B
91 90 ad2antrr φ f B x I D ∞Met B
92 10 ad2antrr φ f B x I P B
93 30 adantr φ f B x I f B
94 xmetcl D ∞Met B P B f B P D f *
95 91 92 93 94 syl3anc φ f B x I P D f *
96 xrlelttr P x E f x * P D f * A * P x E f x P D f P D f < A P x E f x < A
97 37 95 23 96 syl3anc φ f B x I P x E f x P D f P D f < A P x E f x < A
98 89 97 mpand φ f B x I P D f < A P x E f x < A
99 98 ralrimdva φ f B P D f < A x I P x E f x < A
100 79 99 impbid φ f B x I P x E f x < A P D f < A
101 21 35 100 3bitrrd φ f B P D f < A f x I P x ball E A
102 101 pm5.32da φ f B P D f < A f B f x I P x ball E A
103 elbl D ∞Met B P B A * f P ball D A f B P D f < A
104 90 10 11 103 syl3anc φ f P ball D A f B P D f < A
105 24 r19.21bi φ x I P x V
106 11 adantr φ x I A *
107 blssm E ∞Met V P x V A * P x ball E A V
108 9 105 106 107 syl3anc φ x I P x ball E A V
109 108 ralrimiva φ x I P x ball E A V
110 ss2ixp x I P x ball E A V x I P x ball E A x I V
111 109 110 syl φ x I P x ball E A x I V
112 111 14 sseqtrrd φ x I P x ball E A B
113 112 sseld φ f x I P x ball E A f B
114 113 pm4.71rd φ f x I P x ball E A f B f x I P x ball E A
115 102 104 114 3bitr4d φ f P ball D A f x I P x ball E A
116 115 eqrdv φ P ball D A = x I P x ball E A