Metamath Proof Explorer


Theorem prmirredlem

Description: A positive integer is irreducible over ZZ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis prmirred.i I=Irredring
Assertion prmirredlem AAIA

Proof

Step Hyp Ref Expression
1 prmirred.i I=Irredring
2 zringring ringRing
3 zring1 1=1ring
4 1 3 irredn1 ringRingAIA1
5 2 4 mpan AIA1
6 5 anim2i AAIAA1
7 eluz2b3 A2AA1
8 6 7 sylibr AAIA2
9 nnz yy
10 9 ad2antrl AAIyyAy
11 simprr AAIyyAyA
12 nnne0 yy0
13 12 ad2antrl AAIyyAy0
14 nnz AA
15 14 ad2antrr AAIyyAA
16 dvdsval2 yy0AyAAy
17 10 13 15 16 syl3anc AAIyyAyAAy
18 11 17 mpbid AAIyyAAy
19 15 zcnd AAIyyAA
20 nncn yy
21 20 ad2antrl AAIyyAy
22 19 21 13 divcan2d AAIyyAyAy=A
23 simplr AAIyyAAI
24 22 23 eqeltrd AAIyyAyAyI
25 zringbas =Basering
26 eqid Unitring=Unitring
27 zringmulr ×=ring
28 1 25 26 27 irredmul yAyyAyIyUnitringAyUnitring
29 10 18 24 28 syl3anc AAIyyAyUnitringAyUnitring
30 zringunit yUnitringyy=1
31 30 baib yyUnitringy=1
32 10 31 syl AAIyyAyUnitringy=1
33 nnnn0 yy0
34 nn0re y0y
35 nn0ge0 y00y
36 34 35 absidd y0y=y
37 33 36 syl yy=y
38 37 ad2antrl AAIyyAy=y
39 38 eqeq1d AAIyyAy=1y=1
40 32 39 bitrd AAIyyAyUnitringy=1
41 zringunit AyUnitringAyAy=1
42 41 baib AyAyUnitringAy=1
43 18 42 syl AAIyyAAyUnitringAy=1
44 nnre AA
45 44 ad2antrr AAIyyAA
46 simprl AAIyyAy
47 45 46 nndivred AAIyyAAy
48 nnnn0 AA0
49 nn0ge0 A00A
50 48 49 syl A0A
51 50 ad2antrr AAIyyA0A
52 46 nnred AAIyyAy
53 nngt0 y0<y
54 53 ad2antrl AAIyyA0<y
55 divge0 A0Ay0<y0Ay
56 45 51 52 54 55 syl22anc AAIyyA0Ay
57 47 56 absidd AAIyyAAy=Ay
58 57 eqeq1d AAIyyAAy=1Ay=1
59 1cnd AAIyyA1
60 19 21 59 13 divmuld AAIyyAAy=1y1=A
61 21 mulridd AAIyyAy1=y
62 61 eqeq1d AAIyyAy1=Ay=A
63 58 60 62 3bitrd AAIyyAAy=1y=A
64 43 63 bitrd AAIyyAAyUnitringy=A
65 40 64 orbi12d AAIyyAyUnitringAyUnitringy=1y=A
66 29 65 mpbid AAIyyAy=1y=A
67 66 expr AAIyyAy=1y=A
68 67 ralrimiva AAIyyAy=1y=A
69 isprm2 AA2yyAy=1y=A
70 8 68 69 sylanbrc AAIA
71 prmz AA
72 1nprm ¬1
73 zringunit AUnitringAA=1
74 prmnn AA
75 nn0re A0A
76 75 49 absidd A0A=A
77 74 48 76 3syl AA=A
78 id AA
79 77 78 eqeltrd AA
80 eleq1 A=1A1
81 79 80 syl5ibcom AA=11
82 81 adantld AAA=11
83 73 82 biimtrid AAUnitring1
84 72 83 mtoi A¬AUnitring
85 dvdsmul1 xyxxy
86 85 ad2antlr Axyxy=Axxy
87 simpr Axyxy=Axy=A
88 86 87 breqtrd Axyxy=AxA
89 simplrl Axyxy=Ax
90 71 ad2antrr Axyxy=AA
91 absdvdsb xAxAxA
92 89 90 91 syl2anc Axyxy=AxAxA
93 88 92 mpbid Axyxy=AxA
94 breq1 y=xyAxA
95 eqeq1 y=xy=1x=1
96 eqeq1 y=xy=Ax=A
97 95 96 orbi12d y=xy=1y=Ax=1x=A
98 94 97 imbi12d y=xyAy=1y=AxAx=1x=A
99 69 simprbi AyyAy=1y=A
100 99 ad2antrr Axyxy=AyyAy=1y=A
101 89 zcnd Axyxy=Ax
102 74 ad2antrr Axyxy=AA
103 102 nnne0d Axyxy=AA0
104 simplrr Axyxy=Ay
105 104 zcnd Axyxy=Ay
106 105 mul02d Axyxy=A0y=0
107 103 87 106 3netr4d Axyxy=Axy0y
108 oveq1 x=0xy=0y
109 108 necon3i xy0yx0
110 107 109 syl Axyxy=Ax0
111 101 110 absne0d Axyxy=Ax0
112 111 neneqd Axyxy=A¬x=0
113 nn0abscl xx0
114 89 113 syl Axyxy=Ax0
115 elnn0 x0xx=0
116 114 115 sylib Axyxy=Axx=0
117 116 ord Axyxy=A¬xx=0
118 112 117 mt3d Axyxy=Ax
119 98 100 118 rspcdva Axyxy=AxAx=1x=A
120 93 119 mpd Axyxy=Ax=1x=A
121 zringunit xUnitringxx=1
122 121 baib xxUnitringx=1
123 89 122 syl Axyxy=AxUnitringx=1
124 104 31 syl Axyxy=AyUnitringy=1
125 105 abscld Axyxy=Ay
126 125 recnd Axyxy=Ay
127 1cnd Axyxy=A1
128 101 abscld Axyxy=Ax
129 128 recnd Axyxy=Ax
130 126 127 129 111 mulcand Axyxy=Axy=x1y=1
131 87 fveq2d Axyxy=Axy=A
132 101 105 absmuld Axyxy=Axy=xy
133 77 ad2antrr Axyxy=AA=A
134 131 132 133 3eqtr3d Axyxy=Axy=A
135 129 mulridd Axyxy=Ax1=x
136 134 135 eqeq12d Axyxy=Axy=x1A=x
137 eqcom A=xx=A
138 136 137 bitrdi Axyxy=Axy=x1x=A
139 124 130 138 3bitr2d Axyxy=AyUnitringx=A
140 123 139 orbi12d Axyxy=AxUnitringyUnitringx=1x=A
141 120 140 mpbird Axyxy=AxUnitringyUnitring
142 141 ex Axyxy=AxUnitringyUnitring
143 142 ralrimivva Axyxy=AxUnitringyUnitring
144 25 26 1 27 isirred2 AIA¬AUnitringxyxy=AxUnitringyUnitring
145 71 84 143 144 syl3anbrc AAI
146 145 adantl AAAI
147 70 146 impbida AAIA