Metamath Proof Explorer


Theorem qqhcn

Description: The QQHom homomorphism is a continuous function. (Contributed by Thierry Arnoux, 9-Nov-2017)

Ref Expression
Hypotheses qqhcn.q Q=fld𝑠
qqhcn.j J=TopOpenQ
qqhcn.z Z=ℤModR
qqhcn.k K=TopOpenR
Assertion qqhcn RNrmRingDivRingZNrmModchrR=0ℚHomRJCnK

Proof

Step Hyp Ref Expression
1 qqhcn.q Q=fld𝑠
2 qqhcn.j J=TopOpenQ
3 qqhcn.z Z=ℤModR
4 qqhcn.k K=TopOpenR
5 inss2 NrmRingDivRingDivRing
6 5 sseli RNrmRingDivRingRDivRing
7 6 3ad2ant1 RNrmRingDivRingZNrmModchrR=0RDivRing
8 simp3 RNrmRingDivRingZNrmModchrR=0chrR=0
9 eqid BaseR=BaseR
10 eqid /rR=/rR
11 eqid ℤRHomR=ℤRHomR
12 9 10 11 qqhf RDivRingchrR=0ℚHomR:BaseR
13 7 8 12 syl2anc RNrmRingDivRingZNrmModchrR=0ℚHomR:BaseR
14 simpr RNrmRingDivRingZNrmModchrR=0e+e+
15 qsscn
16 simpr RNrmRingDivRingZNrmModchrR=0e+qq
17 15 16 sselid RNrmRingDivRingZNrmModchrR=0e+qq
18 0cn 0
19 eqid abs=abs
20 19 cnmetdval 0q0absq=0q
21 18 20 mpan q0absq=0q
22 df-neg q=0q
23 22 fveq2i q=0q
24 23 a1i qq=0q
25 absneg qq=q
26 21 24 25 3eqtr2d q0absq=q
27 17 26 syl RNrmRingDivRingZNrmModchrR=0e+q0absq=q
28 zssq
29 0z 0
30 28 29 sselii 0
31 30 a1i RNrmRingDivRingZNrmModchrR=0e+q0
32 31 16 ovresd RNrmRingDivRingZNrmModchrR=0e+q0abs×q=0absq
33 eqid normR=normR
34 33 3 qqhnm RNrmRingDivRingZNrmModchrR=0qnormRℚHomRq=q
35 34 adantlr RNrmRingDivRingZNrmModchrR=0e+qnormRℚHomRq=q
36 27 32 35 3eqtr4d RNrmRingDivRingZNrmModchrR=0e+q0abs×q=normRℚHomRq
37 13 ad2antrr RNrmRingDivRingZNrmModchrR=0e+qℚHomR:BaseR
38 37 31 ffvelcdmd RNrmRingDivRingZNrmModchrR=0e+qℚHomR0BaseR
39 37 16 ffvelcdmd RNrmRingDivRingZNrmModchrR=0e+qℚHomRqBaseR
40 38 39 ovresd RNrmRingDivRingZNrmModchrR=0e+qℚHomR0distRBaseR×BaseRℚHomRq=ℚHomR0distRℚHomRq
41 inss1 NrmRingDivRingNrmRing
42 41 sseli RNrmRingDivRingRNrmRing
43 42 3ad2ant1 RNrmRingDivRingZNrmModchrR=0RNrmRing
44 43 ad2antrr RNrmRingDivRingZNrmModchrR=0e+qRNrmRing
45 nrgngp RNrmRingRNrmGrp
46 44 45 syl RNrmRingDivRingZNrmModchrR=0e+qRNrmGrp
47 eqid -R=-R
48 eqid distR=distR
49 33 9 47 48 ngpdsr RNrmGrpℚHomR0BaseRℚHomRqBaseRℚHomR0distRℚHomRq=normRℚHomRq-RℚHomR0
50 46 38 39 49 syl3anc RNrmRingDivRingZNrmModchrR=0e+qℚHomR0distRℚHomRq=normRℚHomRq-RℚHomR0
51 7 ad2antrr RNrmRingDivRingZNrmModchrR=0e+qRDivRing
52 8 ad2antrr RNrmRingDivRingZNrmModchrR=0e+qchrR=0
53 9 10 11 qqh0 RDivRingchrR=0ℚHomR0=0R
54 51 52 53 syl2anc RNrmRingDivRingZNrmModchrR=0e+qℚHomR0=0R
55 54 oveq2d RNrmRingDivRingZNrmModchrR=0e+qℚHomRq-RℚHomR0=ℚHomRq-R0R
56 ngpgrp RNrmGrpRGrp
57 46 56 syl RNrmRingDivRingZNrmModchrR=0e+qRGrp
58 eqid 0R=0R
59 9 58 47 grpsubid1 RGrpℚHomRqBaseRℚHomRq-R0R=ℚHomRq
60 57 39 59 syl2anc RNrmRingDivRingZNrmModchrR=0e+qℚHomRq-R0R=ℚHomRq
61 55 60 eqtrd RNrmRingDivRingZNrmModchrR=0e+qℚHomRq-RℚHomR0=ℚHomRq
62 61 fveq2d RNrmRingDivRingZNrmModchrR=0e+qnormRℚHomRq-RℚHomR0=normRℚHomRq
63 40 50 62 3eqtrd RNrmRingDivRingZNrmModchrR=0e+qℚHomR0distRBaseR×BaseRℚHomRq=normRℚHomRq
64 36 63 eqtr4d RNrmRingDivRingZNrmModchrR=0e+q0abs×q=ℚHomR0distRBaseR×BaseRℚHomRq
65 64 breq1d RNrmRingDivRingZNrmModchrR=0e+q0abs×q<eℚHomR0distRBaseR×BaseRℚHomRq<e
66 65 biimpd RNrmRingDivRingZNrmModchrR=0e+q0abs×q<eℚHomR0distRBaseR×BaseRℚHomRq<e
67 66 ralrimiva RNrmRingDivRingZNrmModchrR=0e+q0abs×q<eℚHomR0distRBaseR×BaseRℚHomRq<e
68 breq2 d=e0abs×q<d0abs×q<e
69 68 rspceaimv e+q0abs×q<eℚHomR0distRBaseR×BaseRℚHomRq<ed+q0abs×q<dℚHomR0distRBaseR×BaseRℚHomRq<e
70 14 67 69 syl2anc RNrmRingDivRingZNrmModchrR=0e+d+q0abs×q<dℚHomR0distRBaseR×BaseRℚHomRq<e
71 70 ralrimiva RNrmRingDivRingZNrmModchrR=0e+d+q0abs×q<dℚHomR0distRBaseR×BaseRℚHomRq<e
72 cnfldxms fld∞MetSp
73 qex V
74 ressxms fld∞MetSpVfld𝑠∞MetSp
75 72 73 74 mp2an fld𝑠∞MetSp
76 1 75 eqeltri Q∞MetSp
77 1 qrngbas =BaseQ
78 cnfldds abs=distfld
79 1 78 ressds Vabs=distQ
80 73 79 ax-mp abs=distQ
81 77 80 xmsxmet2 Q∞MetSpabs×∞Met
82 76 81 mp1i RNrmRingDivRingZNrmModchrR=0abs×∞Met
83 ngpxms RNrmGrpR∞MetSp
84 42 45 83 3syl RNrmRingDivRingR∞MetSp
85 84 3ad2ant1 RNrmRingDivRingZNrmModchrR=0R∞MetSp
86 9 48 xmsxmet2 R∞MetSpdistRBaseR×BaseR∞MetBaseR
87 85 86 syl RNrmRingDivRingZNrmModchrR=0distRBaseR×BaseR∞MetBaseR
88 30 a1i RNrmRingDivRingZNrmModchrR=00
89 80 reseq1i abs×=distQ×
90 2 77 89 xmstopn Q∞MetSpJ=MetOpenabs×
91 76 90 ax-mp J=MetOpenabs×
92 eqid MetOpendistRBaseR×BaseR=MetOpendistRBaseR×BaseR
93 91 92 metcnp abs×∞MetdistRBaseR×BaseR∞MetBaseR0ℚHomRJCnPMetOpendistRBaseR×BaseR0ℚHomR:BaseRe+d+q0abs×q<dℚHomR0distRBaseR×BaseRℚHomRq<e
94 82 87 88 93 syl3anc RNrmRingDivRingZNrmModchrR=0ℚHomRJCnPMetOpendistRBaseR×BaseR0ℚHomR:BaseRe+d+q0abs×q<dℚHomR0distRBaseR×BaseRℚHomRq<e
95 13 71 94 mpbir2and RNrmRingDivRingZNrmModchrR=0ℚHomRJCnPMetOpendistRBaseR×BaseR0
96 eqid distRBaseR×BaseR=distRBaseR×BaseR
97 4 9 96 xmstopn R∞MetSpK=MetOpendistRBaseR×BaseR
98 85 97 syl RNrmRingDivRingZNrmModchrR=0K=MetOpendistRBaseR×BaseR
99 98 oveq2d RNrmRingDivRingZNrmModchrR=0JCnPK=JCnPMetOpendistRBaseR×BaseR
100 99 fveq1d RNrmRingDivRingZNrmModchrR=0JCnPK0=JCnPMetOpendistRBaseR×BaseR0
101 95 100 eleqtrrd RNrmRingDivRingZNrmModchrR=0ℚHomRJCnPK0
102 cnfldtgp fldTopGrp
103 qsubdrg SubRingfldfld𝑠DivRing
104 103 simpli SubRingfld
105 subrgsubg SubRingfldSubGrpfld
106 104 105 ax-mp SubGrpfld
107 1 subgtgp fldTopGrpSubGrpfldQTopGrp
108 102 106 107 mp2an QTopGrp
109 tgptmd QTopGrpQTopMnd
110 108 109 mp1i RNrmRingDivRingZNrmModchrR=0QTopMnd
111 nrgtrg RNrmRingRTopRing
112 trgtmd2 RTopRingRTopMnd
113 43 111 112 3syl RNrmRingDivRingZNrmModchrR=0RTopMnd
114 9 10 11 1 qqhghm RDivRingchrR=0ℚHomRQGrpHomR
115 7 8 114 syl2anc RNrmRingDivRingZNrmModchrR=0ℚHomRQGrpHomR
116 77 2 4 ghmcnp QTopMndRTopMndℚHomRQGrpHomRℚHomRJCnPK00ℚHomRJCnK
117 110 113 115 116 syl3anc RNrmRingDivRingZNrmModchrR=0ℚHomRJCnPK00ℚHomRJCnK
118 101 117 mpbid RNrmRingDivRingZNrmModchrR=00ℚHomRJCnK
119 118 simprd RNrmRingDivRingZNrmModchrR=0ℚHomRJCnK