Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges absolutely at X , even if the terms in the sequence are multiplied by n . (Contributed by Mario Carneiro, 31-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pser.g | |
|
radcnv.a | |
||
psergf.x | |
||
radcnvlem2.y | |
||
radcnvlem2.a | |
||
radcnvlem2.c | |
||
radcnvlem1.h | |
||
Assertion | radcnvlem1 | |