Metamath Proof Explorer


Theorem radcnvlem1

Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges absolutely at X , even if the terms in the sequence are multiplied by n . (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypotheses pser.g G=xn0Anxn
radcnv.a φA:0
psergf.x φX
radcnvlem2.y φY
radcnvlem2.a φX<Y
radcnvlem2.c φseq0+GYdom
radcnvlem1.h H=m0mGXm
Assertion radcnvlem1 φseq0+Hdom

Proof

Step Hyp Ref Expression
1 pser.g G=xn0Anxn
2 radcnv.a φA:0
3 psergf.x φX
4 radcnvlem2.y φY
5 radcnvlem2.a φX<Y
6 radcnvlem2.c φseq0+GYdom
7 radcnvlem1.h H=m0mGXm
8 nn0uz 0=0
9 0zd φ0
10 1rp 1+
11 10 a1i φ1+
12 1 pserval2 Yk0GYk=AkYk
13 4 12 sylan φk0GYk=AkYk
14 fvexd φGYV
15 1 2 4 psergf φGY:0
16 15 ffvelcdmda φk0GYk
17 8 9 14 6 16 serf0 φGY0
18 8 9 11 13 17 climi0 φj0kjAkYk<1
19 simprl φj0kjAkYk<1j0
20 nn0re i0i
21 20 adantl φj0kjAkYk<1i0i
22 3 adantr φj0kjAkYk<1X
23 22 abscld φj0kjAkYk<1X
24 4 adantr φj0kjAkYk<1Y
25 24 abscld φj0kjAkYk<1Y
26 0red φ0
27 3 abscld φX
28 4 abscld φY
29 3 absge0d φ0X
30 26 27 28 29 5 lelttrd φ0<Y
31 30 gt0ne0d φY0
32 31 adantr φj0kjAkYk<1Y0
33 23 25 32 redivcld φj0kjAkYk<1XY
34 reexpcl XYi0XYi
35 33 34 sylan φj0kjAkYk<1i0XYi
36 21 35 remulcld φj0kjAkYk<1i0iXYi
37 eqid i0iXYi=i0iXYi
38 36 37 fmptd φj0kjAkYk<1i0iXYi:0
39 38 ffvelcdmda φj0kjAkYk<1m0i0iXYim
40 nn0re m0m
41 40 adantl φm0m
42 1 2 3 psergf φGX:0
43 42 ffvelcdmda φm0GXm
44 43 abscld φm0GXm
45 41 44 remulcld φm0mGXm
46 45 7 fmptd φH:0
47 46 adantr φj0kjAkYk<1H:0
48 47 ffvelcdmda φj0kjAkYk<1m0Hm
49 48 recnd φj0kjAkYk<1m0Hm
50 27 28 31 redivcld φXY
51 50 recnd φXY
52 divge0 X0XY0<Y0XY
53 27 29 28 30 52 syl22anc φ0XY
54 50 53 absidd φXY=XY
55 28 recnd φY
56 55 mulridd φY1=Y
57 5 56 breqtrrd φX<Y1
58 1red φ1
59 ltdivmul X1Y0<YXY<1X<Y1
60 27 58 28 30 59 syl112anc φXY<1X<Y1
61 57 60 mpbird φXY<1
62 54 61 eqbrtrd φXY<1
63 37 geomulcvg XYXY<1seq0+i0iXYidom
64 51 62 63 syl2anc φseq0+i0iXYidom
65 64 adantr φj0kjAkYk<1seq0+i0iXYidom
66 1red φj0kjAkYk<11
67 42 ad2antrr φj0kjAkYk<1mjGX:0
68 eluznn0 j0mjm0
69 19 68 sylan φj0kjAkYk<1mjm0
70 67 69 ffvelcdmd φj0kjAkYk<1mjGXm
71 70 abscld φj0kjAkYk<1mjGXm
72 33 adantr φj0kjAkYk<1mjXY
73 72 69 reexpcld φj0kjAkYk<1mjXYm
74 69 nn0red φj0kjAkYk<1mjm
75 69 nn0ge0d φj0kjAkYk<1mj0m
76 2 ad2antrr φj0kjAkYk<1mjA:0
77 76 69 ffvelcdmd φj0kjAkYk<1mjAm
78 4 ad2antrr φj0kjAkYk<1mjY
79 78 69 expcld φj0kjAkYk<1mjYm
80 77 79 mulcld φj0kjAkYk<1mjAmYm
81 80 abscld φj0kjAkYk<1mjAmYm
82 1red φj0kjAkYk<1mj1
83 3 ad2antrr φj0kjAkYk<1mjX
84 83 abscld φj0kjAkYk<1mjX
85 84 69 reexpcld φj0kjAkYk<1mjXm
86 83 absge0d φj0kjAkYk<1mj0X
87 84 69 86 expge0d φj0kjAkYk<1mj0Xm
88 simprr φj0kjAkYk<1kjAkYk<1
89 fveq2 k=mAk=Am
90 oveq2 k=mYk=Ym
91 89 90 oveq12d k=mAkYk=AmYm
92 91 fveq2d k=mAkYk=AmYm
93 92 breq1d k=mAkYk<1AmYm<1
94 93 rspccva kjAkYk<1mjAmYm<1
95 88 94 sylan φj0kjAkYk<1mjAmYm<1
96 1re 1
97 ltle AmYm1AmYm<1AmYm1
98 81 96 97 sylancl φj0kjAkYk<1mjAmYm<1AmYm1
99 95 98 mpd φj0kjAkYk<1mjAmYm1
100 81 82 85 87 99 lemul1ad φj0kjAkYk<1mjAmYmXm1Xm
101 83 69 expcld φj0kjAkYk<1mjXm
102 77 101 mulcld φj0kjAkYk<1mjAmXm
103 102 79 absmuld φj0kjAkYk<1mjAmXmYm=AmXmYm
104 80 101 absmuld φj0kjAkYk<1mjAmYmXm=AmYmXm
105 77 79 101 mul32d φj0kjAkYk<1mjAmYmXm=AmXmYm
106 105 fveq2d φj0kjAkYk<1mjAmYmXm=AmXmYm
107 83 69 absexpd φj0kjAkYk<1mjXm=Xm
108 107 oveq2d φj0kjAkYk<1mjAmYmXm=AmYmXm
109 104 106 108 3eqtr3d φj0kjAkYk<1mjAmXmYm=AmYmXm
110 78 69 absexpd φj0kjAkYk<1mjYm=Ym
111 110 oveq2d φj0kjAkYk<1mjAmXmYm=AmXmYm
112 103 109 111 3eqtr3d φj0kjAkYk<1mjAmYmXm=AmXmYm
113 85 recnd φj0kjAkYk<1mjXm
114 113 mullidd φj0kjAkYk<1mj1Xm=Xm
115 100 112 114 3brtr3d φj0kjAkYk<1mjAmXmYmXm
116 102 abscld φj0kjAkYk<1mjAmXm
117 25 adantr φj0kjAkYk<1mjY
118 117 69 reexpcld φj0kjAkYk<1mjYm
119 eluzelz mjm
120 119 adantl φj0kjAkYk<1mjm
121 30 ad2antrr φj0kjAkYk<1mj0<Y
122 expgt0 Ym0<Y0<Ym
123 117 120 121 122 syl3anc φj0kjAkYk<1mj0<Ym
124 lemuldiv AmXmXmYm0<YmAmXmYmXmAmXmXmYm
125 116 85 118 123 124 syl112anc φj0kjAkYk<1mjAmXmYmXmAmXmXmYm
126 115 125 mpbid φj0kjAkYk<1mjAmXmXmYm
127 1 pserval2 Xm0GXm=AmXm
128 83 69 127 syl2anc φj0kjAkYk<1mjGXm=AmXm
129 128 fveq2d φj0kjAkYk<1mjGXm=AmXm
130 23 recnd φj0kjAkYk<1X
131 130 adantr φj0kjAkYk<1mjX
132 25 recnd φj0kjAkYk<1Y
133 132 adantr φj0kjAkYk<1mjY
134 31 ad2antrr φj0kjAkYk<1mjY0
135 131 133 134 69 expdivd φj0kjAkYk<1mjXYm=XmYm
136 126 129 135 3brtr4d φj0kjAkYk<1mjGXmXYm
137 71 73 74 75 136 lemul2ad φj0kjAkYk<1mjmGXmmXYm
138 74 71 remulcld φj0kjAkYk<1mjmGXm
139 70 absge0d φj0kjAkYk<1mj0GXm
140 74 71 75 139 mulge0d φj0kjAkYk<1mj0mGXm
141 138 140 absidd φj0kjAkYk<1mjmGXm=mGXm
142 74 73 remulcld φj0kjAkYk<1mjmXYm
143 142 recnd φj0kjAkYk<1mjmXYm
144 143 mullidd φj0kjAkYk<1mj1mXYm=mXYm
145 137 141 144 3brtr4d φj0kjAkYk<1mjmGXm1mXYm
146 ovex mGXmV
147 7 fvmpt2 m0mGXmVHm=mGXm
148 69 146 147 sylancl φj0kjAkYk<1mjHm=mGXm
149 148 fveq2d φj0kjAkYk<1mjHm=mGXm
150 id i=mi=m
151 oveq2 i=mXYi=XYm
152 150 151 oveq12d i=miXYi=mXYm
153 ovex mXYmV
154 152 37 153 fvmpt m0i0iXYim=mXYm
155 69 154 syl φj0kjAkYk<1mji0iXYim=mXYm
156 155 oveq2d φj0kjAkYk<1mj1i0iXYim=1mXYm
157 145 149 156 3brtr4d φj0kjAkYk<1mjHm1i0iXYim
158 8 19 39 49 65 66 157 cvgcmpce φj0kjAkYk<1seq0+Hdom
159 18 158 rexlimddv φseq0+Hdom