Metamath Proof Explorer


Theorem requad2

Description: A condition for a quadratic equation with real coefficients to have (exactly) two different real solutions. (Contributed by AV, 28-Jan-2023)

Ref Expression
Hypotheses requad2.a φA
requad2.z φA0
requad2.b φB
requad2.c φC
requad2.d φD=B24AC
Assertion requad2 φ∃!p𝒫p=2xpAx2+Bx+C=00<D

Proof

Step Hyp Ref Expression
1 requad2.a φA
2 requad2.z φA0
3 requad2.b φB
4 requad2.c φC
5 requad2.d φD=B24AC
6 1 recnd φA
7 6 ad3antrrr φ0Dp𝒫xpA
8 2 ad3antrrr φ0Dp𝒫xpA0
9 3 recnd φB
10 9 ad3antrrr φ0Dp𝒫xpB
11 4 recnd φC
12 11 ad3antrrr φ0Dp𝒫xpC
13 elelpwi xpp𝒫x
14 13 expcom p𝒫xpx
15 14 adantl φ0Dp𝒫xpx
16 15 imp φ0Dp𝒫xpx
17 16 recnd φ0Dp𝒫xpx
18 5 ad3antrrr φ0Dp𝒫xpD=B24AC
19 7 8 10 12 17 18 quad φ0Dp𝒫xpAx2+Bx+C=0x=-B+D2Ax=-B-D2A
20 19 ralbidva φ0Dp𝒫xpAx2+Bx+C=0xpx=-B+D2Ax=-B-D2A
21 20 anbi2d φ0Dp𝒫p=2xpAx2+Bx+C=0p=2xpx=-B+D2Ax=-B-D2A
22 21 reubidva φ0D∃!p𝒫p=2xpAx2+Bx+C=0∃!p𝒫p=2xpx=-B+D2Ax=-B-D2A
23 eqid q𝒫|q=2=q𝒫|q=2
24 23 pairreueq ∃!pq𝒫|q=2xpx=-B+D2Ax=-B-D2A∃!p𝒫p=2xpx=-B+D2Ax=-B-D2A
25 24 bicomi ∃!p𝒫p=2xpx=-B+D2Ax=-B-D2A∃!pq𝒫|q=2xpx=-B+D2Ax=-B-D2A
26 25 a1i φ0D∃!p𝒫p=2xpx=-B+D2Ax=-B-D2A∃!pq𝒫|q=2xpx=-B+D2Ax=-B-D2A
27 3 renegcld φB
28 27 adantr φ0DB
29 3 resqcld φB2
30 4re 4
31 30 a1i φ4
32 1 4 remulcld φAC
33 31 32 remulcld φ4AC
34 29 33 resubcld φB24AC
35 5 34 eqeltrd φD
36 35 adantr φ0DD
37 simpr φ0D0D
38 36 37 resqrtcld φ0DD
39 28 38 readdcld φ0D-B+D
40 2re 2
41 40 a1i φ2
42 41 1 remulcld φ2A
43 42 adantr φ0D2A
44 2cnne0 220
45 44 a1i φ220
46 mulne0 220AA02A0
47 45 6 2 46 syl12anc φ2A0
48 47 adantr φ0D2A0
49 39 43 48 redivcld φ0D-B+D2A
50 3 adantr φ0DB
51 50 renegcld φ0DB
52 51 38 resubcld φ0D-B-D
53 40 a1i φ0D2
54 1 adantr φ0DA
55 53 54 remulcld φ0D2A
56 52 55 48 redivcld φ0D-B-D2A
57 fveqeq2 q=xq=2x=2
58 57 cbvrabv q𝒫|q=2=x𝒫|x=2
59 49 56 58 paireqne φ0D∃!pq𝒫|q=2xpx=-B+D2Ax=-B-D2A-B+D2A-B-D2A
60 9 negcld φB
61 35 recnd φD
62 61 sqrtcld φD
63 60 62 addcld φ-B+D
64 60 62 subcld φ-B-D
65 2cnd φ2
66 65 6 mulcld φ2A
67 div11 -B+D-B-D2A2A0-B+D2A=-B-D2A-B+D=-B-D
68 63 64 66 47 67 syl112anc φ-B+D2A=-B-D2A-B+D=-B-D
69 60 62 negsubd φ-B+D=-B-D
70 69 eqcomd φ-B-D=-B+D
71 70 eqeq2d φ-B+D=-B-D-B+D=-B+D
72 62 negcld φD
73 60 62 72 addcand φ-B+D=-B+DD=D
74 68 71 73 3bitrd φ-B+D2A=-B-D2AD=D
75 74 necon3bid φ-B+D2A-B-D2ADD
76 75 adantr φ0D-B+D2A-B-D2ADD
77 cnsqrt00 DD=0D=0
78 61 77 syl φD=0D=0
79 78 necon3bid φD0D0
80 79 adantr φ0DD0D0
81 62 eqnegd φD=DD=0
82 81 adantr φ0DD=DD=0
83 82 necon3bid φ0DDDD0
84 0red φ0D0
85 84 36 37 leltned φ0D0<DD0
86 80 83 85 3bitr4d φ0DDD0<D
87 76 86 bitrd φ0D-B+D2A-B-D2A0<D
88 26 59 87 3bitrd φ0D∃!p𝒫p=2xpx=-B+D2Ax=-B-D2A0<D
89 22 88 bitrd φ0D∃!p𝒫p=2xpAx2+Bx+C=00<D
90 89 expcom 0Dφ∃!p𝒫p=2xpAx2+Bx+C=00<D
91 hash2prb p𝒫p=2apbpabp=ab
92 91 adantl φp𝒫p=2apbpabp=ab
93 raleq p=abxpAx2+Bx+C=0xabAx2+Bx+C=0
94 vex aV
95 vex bV
96 oveq1 x=ax2=a2
97 96 oveq2d x=aAx2=Aa2
98 oveq2 x=aBx=Ba
99 98 oveq1d x=aBx+C=Ba+C
100 97 99 oveq12d x=aAx2+Bx+C=Aa2+Ba+C
101 100 eqeq1d x=aAx2+Bx+C=0Aa2+Ba+C=0
102 oveq1 x=bx2=b2
103 102 oveq2d x=bAx2=Ab2
104 oveq2 x=bBx=Bb
105 104 oveq1d x=bBx+C=Bb+C
106 103 105 oveq12d x=bAx2+Bx+C=Ab2+Bb+C
107 106 eqeq1d x=bAx2+Bx+C=0Ab2+Bb+C=0
108 94 95 101 107 ralpr xabAx2+Bx+C=0Aa2+Ba+C=0Ab2+Bb+C=0
109 93 108 bitrdi p=abxpAx2+Bx+C=0Aa2+Ba+C=0Ab2+Bb+C=0
110 109 adantl abp=abxpAx2+Bx+C=0Aa2+Ba+C=0Ab2+Bb+C=0
111 110 adantl φp𝒫apbpabp=abxpAx2+Bx+C=0Aa2+Ba+C=0Ab2+Bb+C=0
112 elelpwi bpp𝒫b
113 112 ex bpp𝒫b
114 113 adantl apbpp𝒫b
115 114 com12 p𝒫apbpb
116 115 adantl φp𝒫apbpb
117 116 imp φp𝒫apbpb
118 oveq1 y=by2=b2
119 118 oveq2d y=bAy2=Ab2
120 oveq2 y=bBy=Bb
121 120 oveq1d y=bBy+C=Bb+C
122 119 121 oveq12d y=bAy2+By+C=Ab2+Bb+C
123 122 eqeq1d y=bAy2+By+C=0Ab2+Bb+C=0
124 123 adantl φp𝒫apbpy=bAy2+By+C=0Ab2+Bb+C=0
125 117 124 rspcedv φp𝒫apbpAb2+Bb+C=0yAy2+By+C=0
126 125 adantr φp𝒫apbpabp=abAb2+Bb+C=0yAy2+By+C=0
127 126 adantld φp𝒫apbpabp=abAa2+Ba+C=0Ab2+Bb+C=0yAy2+By+C=0
128 111 127 sylbid φp𝒫apbpabp=abxpAx2+Bx+C=0yAy2+By+C=0
129 128 ex φp𝒫apbpabp=abxpAx2+Bx+C=0yAy2+By+C=0
130 129 rexlimdvva φp𝒫apbpabp=abxpAx2+Bx+C=0yAy2+By+C=0
131 92 130 sylbid φp𝒫p=2xpAx2+Bx+C=0yAy2+By+C=0
132 131 impd φp𝒫p=2xpAx2+Bx+C=0yAy2+By+C=0
133 132 rexlimdva φp𝒫p=2xpAx2+Bx+C=0yAy2+By+C=0
134 1 2 3 4 5 requad01 φyAy2+By+C=00D
135 133 134 sylibd φp𝒫p=2xpAx2+Bx+C=00D
136 135 con3d φ¬0D¬p𝒫p=2xpAx2+Bx+C=0
137 136 impcom ¬0Dφ¬p𝒫p=2xpAx2+Bx+C=0
138 reurex ∃!p𝒫p=2xpAx2+Bx+C=0p𝒫p=2xpAx2+Bx+C=0
139 137 138 nsyl ¬0Dφ¬∃!p𝒫p=2xpAx2+Bx+C=0
140 139 pm2.21d ¬0Dφ∃!p𝒫p=2xpAx2+Bx+C=00<D
141 0red φ0
142 ltle 0D0<D0D
143 141 35 142 syl2anc φ0<D0D
144 pm2.24 0D¬0D∃!p𝒫p=2xpAx2+Bx+C=0
145 143 144 syl6 φ0<D¬0D∃!p𝒫p=2xpAx2+Bx+C=0
146 145 com23 φ¬0D0<D∃!p𝒫p=2xpAx2+Bx+C=0
147 146 impcom ¬0Dφ0<D∃!p𝒫p=2xpAx2+Bx+C=0
148 140 147 impbid ¬0Dφ∃!p𝒫p=2xpAx2+Bx+C=00<D
149 148 ex ¬0Dφ∃!p𝒫p=2xpAx2+Bx+C=00<D
150 90 149 pm2.61i φ∃!p𝒫p=2xpAx2+Bx+C=00<D