Metamath Proof Explorer


Theorem resconn

Description: A subset of RR is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypothesis resconn.1 J=topGenran.𝑡A
Assertion resconn AJSConnJConn

Proof

Step Hyp Ref Expression
1 resconn.1 J=topGenran.𝑡A
2 sconnpconn JSConnJPConn
3 pconnconn JPConnJConn
4 2 3 syl JSConnJConn
5 eqid TopOpenfld=TopOpenfld
6 eqid topGenran.=topGenran.
7 5 6 rerest ATopOpenfld𝑡A=topGenran.𝑡A
8 7 1 eqtr4di ATopOpenfld𝑡A=J
9 8 adantr AJConnTopOpenfld𝑡A=J
10 simpl AJConnA
11 ax-resscn
12 10 11 sstrdi AJConnA
13 df-3an xAyAt01xAyAt01
14 oveq2 z=xtz=tx
15 oveq2 w=y1tw=1ty
16 14 15 oveqan12d z=xw=ytz+1tw=tx+1ty
17 16 eleq1d z=xw=ytz+1twAtx+1tyA
18 17 ralbidv z=xw=yt01tz+1twAt01tx+1tyA
19 oveq2 z=ytz=ty
20 oveq2 w=x1tw=1tx
21 19 20 oveqan12d z=yw=xtz+1tw=ty+1tx
22 21 eleq1d z=yw=xtz+1twAty+1txA
23 22 ralbidv z=yw=xt01tz+1twAt01ty+1txA
24 unitssre 01
25 24 11 sstri 01
26 simpr AJConnxAyAxys01s01
27 25 26 sselid AJConnxAyAxys01s
28 12 adantr AJConnxAyAxyA
29 simpr2 AJConnxAyAxyyA
30 28 29 sseldd AJConnxAyAxyy
31 30 adantr AJConnxAyAxys01y
32 27 31 mulcld AJConnxAyAxys01sy
33 ax-1cn 1
34 subcl 1s1s
35 33 27 34 sylancr AJConnxAyAxys011s
36 simpr1 AJConnxAyAxyxA
37 28 36 sseldd AJConnxAyAxyx
38 37 adantr AJConnxAyAxys01x
39 35 38 mulcld AJConnxAyAxys011sx
40 32 39 addcomd AJConnxAyAxys01sy+1sx=1sx+sy
41 nncan 1s11s=s
42 33 27 41 sylancr AJConnxAyAxys0111s=s
43 42 oveq1d AJConnxAyAxys0111sy=sy
44 43 oveq2d AJConnxAyAxys011sx+11sy=1sx+sy
45 40 44 eqtr4d AJConnxAyAxys01sy+1sx=1sx+11sy
46 iirev s011s01
47 46 adantl AJConnxAyAxys011s01
48 1 eleq1i JConntopGenran.𝑡AConn
49 reconn AtopGenran.𝑡AConnxAyAxyA
50 48 49 bitrid AJConnxAyAxyA
51 50 biimpa AJConnxAyAxyA
52 51 r19.21bi AJConnxAyAxyA
53 52 r19.21bi AJConnxAyAxyA
54 53 anasss AJConnxAyAxyA
55 54 3adantr3 AJConnxAyAxyxyA
56 55 adantr AJConnxAyAxyt01xyA
57 simpr AJConnxAyAxyt01t01
58 24 57 sselid AJConnxAyAxyt01t
59 simplll AJConnxAyAxyt01A
60 36 adantr AJConnxAyAxyt01xA
61 59 60 sseldd AJConnxAyAxyt01x
62 58 61 remulcld AJConnxAyAxyt01tx
63 1re 1
64 resubcl 1t1t
65 63 58 64 sylancr AJConnxAyAxyt011t
66 29 adantr AJConnxAyAxyt01yA
67 59 66 sseldd AJConnxAyAxyt01y
68 65 67 remulcld AJConnxAyAxyt011ty
69 62 68 readdcld AJConnxAyAxyt01tx+1ty
70 58 recnd AJConnxAyAxyt01t
71 pncan3 t1t+1-t=1
72 70 33 71 sylancl AJConnxAyAxyt01t+1-t=1
73 72 oveq1d AJConnxAyAxyt01t+1-tx=1x
74 65 recnd AJConnxAyAxyt011t
75 37 adantr AJConnxAyAxyt01x
76 70 74 75 adddird AJConnxAyAxyt01t+1-tx=tx+1tx
77 75 mullidd AJConnxAyAxyt011x=x
78 73 76 77 3eqtr3d AJConnxAyAxyt01tx+1tx=x
79 65 61 remulcld AJConnxAyAxyt011tx
80 elicc01 t01t0tt1
81 57 80 sylib AJConnxAyAxyt01t0tt1
82 81 simp3d AJConnxAyAxyt01t1
83 subge0 1t01tt1
84 63 58 83 sylancr AJConnxAyAxyt0101tt1
85 82 84 mpbird AJConnxAyAxyt0101t
86 simplr3 AJConnxAyAxyt01xy
87 61 67 65 85 86 lemul2ad AJConnxAyAxyt011tx1ty
88 79 68 62 87 leadd2dd AJConnxAyAxyt01tx+1txtx+1ty
89 78 88 eqbrtrrd AJConnxAyAxyt01xtx+1ty
90 58 67 remulcld AJConnxAyAxyt01ty
91 81 simp2d AJConnxAyAxyt010t
92 61 67 58 91 86 lemul2ad AJConnxAyAxyt01txty
93 62 90 68 92 leadd1dd AJConnxAyAxyt01tx+1tyty+1ty
94 72 oveq1d AJConnxAyAxyt01t+1-ty=1y
95 30 adantr AJConnxAyAxyt01y
96 70 74 95 adddird AJConnxAyAxyt01t+1-ty=ty+1ty
97 95 mullidd AJConnxAyAxyt011y=y
98 94 96 97 3eqtr3d AJConnxAyAxyt01ty+1ty=y
99 93 98 breqtrd AJConnxAyAxyt01tx+1tyy
100 elicc2 xytx+1tyxytx+1tyxtx+1tytx+1tyy
101 61 67 100 syl2anc AJConnxAyAxyt01tx+1tyxytx+1tyxtx+1tytx+1tyy
102 69 89 99 101 mpbir3and AJConnxAyAxyt01tx+1tyxy
103 56 102 sseldd AJConnxAyAxyt01tx+1tyA
104 103 ralrimiva AJConnxAyAxyt01tx+1tyA
105 104 adantr AJConnxAyAxys01t01tx+1tyA
106 oveq1 t=1stx=1sx
107 oveq2 t=1s1t=11s
108 107 oveq1d t=1s1ty=11sy
109 106 108 oveq12d t=1stx+1ty=1sx+11sy
110 109 eleq1d t=1stx+1tyA1sx+11syA
111 110 rspcv 1s01t01tx+1tyA1sx+11syA
112 47 105 111 sylc AJConnxAyAxys011sx+11syA
113 45 112 eqeltrd AJConnxAyAxys01sy+1sxA
114 113 ralrimiva AJConnxAyAxys01sy+1sxA
115 oveq1 s=tsy=ty
116 oveq2 s=t1s=1t
117 116 oveq1d s=t1sx=1tx
118 115 117 oveq12d s=tsy+1sx=ty+1tx
119 118 eleq1d s=tsy+1sxAty+1txA
120 119 cbvralvw s01sy+1sxAt01ty+1txA
121 114 120 sylib AJConnxAyAxyt01ty+1txA
122 18 23 10 121 104 wloglei AJConnxAyAt01tx+1tyA
123 122 r19.21bi AJConnxAyAt01tx+1tyA
124 123 anasss AJConnxAyAt01tx+1tyA
125 13 124 sylan2b AJConnxAyAt01tx+1tyA
126 eqid TopOpenfld𝑡A=TopOpenfld𝑡A
127 12 125 5 126 cvxsconn AJConnTopOpenfld𝑡ASConn
128 9 127 eqeltrrd AJConnJSConn
129 128 ex AJConnJSConn
130 4 129 impbid2 AJSConnJConn