Metamath Proof Explorer


Theorem stirlinglem1

Description: A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017)

Ref Expression
Hypotheses stirlinglem1.1 H=nn2n2n+1
stirlinglem1.2 F=n112n+1
stirlinglem1.3 G=n12n+1
stirlinglem1.4 L=n1n
Assertion stirlinglem1 H12

Proof

Step Hyp Ref Expression
1 stirlinglem1.1 H=nn2n2n+1
2 stirlinglem1.2 F=n112n+1
3 stirlinglem1.3 G=n12n+1
4 stirlinglem1.4 L=n1n
5 nnuz =1
6 1zzd 1
7 ax-1cn 1
8 divcnv 1n1n0
9 7 8 ax-mp n1n0
10 4 9 eqbrtri L0
11 10 a1i L0
12 nnex V
13 12 mptex n12n+1V
14 3 13 eqeltri GV
15 14 a1i GV
16 4 a1i kL=n1n
17 simpr kn=kn=k
18 17 oveq2d kn=k1n=1k
19 id kk
20 nnrp kk+
21 20 rpreccld k1k+
22 16 18 19 21 fvmptd kLk=1k
23 nnrecre k1k
24 22 23 eqeltrd kLk
25 24 adantl kLk
26 3 a1i kG=n12n+1
27 17 oveq2d kn=k2n=2k
28 27 oveq1d kn=k2n+1=2k+1
29 28 oveq2d kn=k12n+1=12k+1
30 2re 2
31 30 a1i k2
32 nnre kk
33 31 32 remulcld k2k
34 0le2 02
35 34 a1i k02
36 20 rpge0d k0k
37 31 32 35 36 mulge0d k02k
38 33 37 ge0p1rpd k2k+1+
39 38 rpreccld k12k+1+
40 26 29 19 39 fvmptd kGk=12k+1
41 39 rpred k12k+1
42 40 41 eqeltrd kGk
43 42 adantl kGk
44 1red k1
45 0le1 01
46 45 a1i k01
47 33 44 readdcld k2k+1
48 nncn kk
49 48 mullidd k1k=k
50 1lt2 1<2
51 50 a1i k1<2
52 44 31 20 51 ltmul1dd k1k<2k
53 49 52 eqbrtrrd kk<2k
54 33 ltp1d k2k<2k+1
55 32 33 47 53 54 lttrd kk<2k+1
56 32 47 55 ltled kk2k+1
57 20 38 44 46 56 lediv2ad k12k+11k
58 57 40 22 3brtr4d kGkLk
59 58 adantl kGkLk
60 39 rpge0d k012k+1
61 60 40 breqtrrd k0Gk
62 61 adantl k0Gk
63 5 6 11 15 25 43 59 62 climsqz2 G0
64 1cnd 1
65 12 mptex n112n+1V
66 2 65 eqeltri FV
67 66 a1i FV
68 43 recnd kGk
69 2 a1i kF=n112n+1
70 29 oveq2d kn=k112n+1=112k+1
71 1cnd k1
72 2cnd k2
73 72 48 mulcld k2k
74 73 71 addcld k2k+1
75 38 rpne0d k2k+10
76 74 75 reccld k12k+1
77 71 76 subcld k112k+1
78 69 70 19 77 fvmptd kFk=112k+1
79 40 eqcomd k12k+1=Gk
80 79 oveq2d k112k+1=1Gk
81 78 80 eqtrd kFk=1Gk
82 81 adantl kFk=1Gk
83 5 6 63 64 67 68 82 climsubc2 F10
84 1m0e1 10=1
85 83 84 breqtrdi F1
86 64 halfcld 12
87 12 mptex nn2n2n+1V
88 1 87 eqeltri HV
89 88 a1i HV
90 78 77 eqeltrd kFk
91 90 adantl kFk
92 nncn nn
93 92 sqcld nn2
94 93 mullidd n1n2=n2
95 94 eqcomd nn2=1n2
96 2cnd n2
97 96 92 mulcld n2n
98 1cnd n1
99 92 97 98 adddid nn2n+1=n2n+n1
100 92 96 92 mul12d nn2n=2nn
101 92 sqvald nn2=nn
102 101 eqcomd nnn=n2
103 102 oveq2d n2nn=2n2
104 100 103 eqtrd nn2n=2n2
105 92 mulridd nn1=n
106 104 105 oveq12d nn2n+n1=2n2+n
107 2ne0 20
108 107 a1i n20
109 92 96 108 divcan2d n2n2=n
110 109 eqcomd nn=2n2
111 110 oveq2d n2n2+n=2n2+2n2
112 92 halfcld nn2
113 96 93 112 adddid n2n2+n2=2n2+2n2
114 111 113 eqtr4d n2n2+n=2n2+n2
115 99 106 114 3eqtrd nn2n+1=2n2+n2
116 95 115 oveq12d nn2n2n+1=1n22n2+n2
117 93 112 addcld nn2+n2
118 nnrp nn+
119 2z 2
120 119 a1i n2
121 118 120 rpexpcld nn2+
122 118 rphalfcld nn2+
123 121 122 rpaddcld nn2+n2+
124 123 rpne0d nn2+n20
125 98 96 93 117 108 124 divmuldivd n12n2n2+n2=1n22n2+n2
126 93 112 pncand nn2+n2-n2=n2
127 126 eqcomd nn2=n2+n2-n2
128 127 oveq1d nn2n2+n2=n2+n2-n2n2+n2
129 117 112 117 124 divsubdird nn2+n2-n2n2+n2=n2+n2n2+n2n2n2+n2
130 117 124 dividd nn2+n2n2+n2=1
131 130 oveq1d nn2+n2n2+n2n2n2+n2=1n2n2+n2
132 128 129 131 3eqtrd nn2n2+n2=1n2n2+n2
133 nnne0 nn0
134 96 92 133 divcld n2n
135 96 92 108 133 divne0d n2n0
136 112 117 134 124 135 divcan5rd nn22nn2+n22n=n2n2+n2
137 92 96 133 108 divcan6d nn22n=1
138 93 112 134 adddird nn2+n22n=n22n+n22n
139 93 96 92 133 div12d nn22n=2n2n
140 1e2m1 1=21
141 140 oveq2i n1=n21
142 92 exp1d nn1=n
143 92 133 120 expm1d nn21=n2n
144 141 142 143 3eqtr3a nn=n2n
145 144 eqcomd nn2n=n
146 145 oveq2d n2n2n=2n
147 139 146 eqtrd nn22n=2n
148 147 137 oveq12d nn22n+n22n=2n+1
149 138 148 eqtrd nn2+n22n=2n+1
150 137 149 oveq12d nn22nn2+n22n=12n+1
151 136 150 eqtr3d nn2n2+n2=12n+1
152 151 oveq2d n1n2n2+n2=112n+1
153 132 152 eqtrd nn2n2+n2=112n+1
154 153 oveq2d n12n2n2+n2=12112n+1
155 116 125 154 3eqtr2d nn2n2n+1=12112n+1
156 155 mpteq2ia nn2n2n+1=n12112n+1
157 1 156 eqtri H=n12112n+1
158 157 a1i kH=n12112n+1
159 70 oveq2d kn=k12112n+1=12112k+1
160 71 halfcld k12
161 160 77 mulcld k12112k+1
162 158 159 19 161 fvmptd kHk=12112k+1
163 78 oveq2d k12Fk=12112k+1
164 162 163 eqtr4d kHk=12Fk
165 164 adantl kHk=12Fk
166 5 6 85 86 89 91 165 climmulc2 H121
167 166 mptru H121
168 halfcn 12
169 168 mulridi 121=12
170 167 169 breqtri H12