Metamath Proof Explorer


Theorem stirlinglem4

Description: Algebraic manipulation of ( ( B n ) - ( B ( n + 1 ) ) ) . It will be used in other theorems to show that B is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem4.1 A=nn!2nnen
stirlinglem4.2 B=nlogAn
stirlinglem4.3 J=n1+2n2logn+1n1
Assertion stirlinglem4 NBNBN+1=JN

Proof

Step Hyp Ref Expression
1 stirlinglem4.1 A=nn!2nnen
2 stirlinglem4.2 B=nlogAn
3 stirlinglem4.3 J=n1+2n2logn+1n1
4 nnre NN
5 nnnn0 NN0
6 5 nn0ge0d N0N
7 4 6 ge0p1rpd NN+1+
8 nnrp NN+
9 7 8 rpdivcld NN+1N+
10 9 rpsqrtcld NN+1N+
11 nnz NN
12 9 11 rpexpcld NN+1NN+
13 10 12 rpmulcld NN+1NN+1NN+
14 epr e+
15 14 a1i Ne+
16 13 15 relogdivd NlogN+1NN+1NNe=logN+1NN+1NNloge
17 10 12 relogmuld NlogN+1NN+1NN=logN+1N+logN+1NN
18 logsqrt N+1N+logN+1N=logN+1N2
19 9 18 syl NlogN+1N=logN+1N2
20 relogexp N+1N+NlogN+1NN=NlogN+1N
21 9 11 20 syl2anc NlogN+1NN=NlogN+1N
22 19 21 oveq12d NlogN+1N+logN+1NN=logN+1N2+NlogN+1N
23 17 22 eqtrd NlogN+1NN+1NN=logN+1N2+NlogN+1N
24 peano2nn NN+1
25 24 nncnd NN+1
26 nncn NN
27 nnne0 NN0
28 25 26 27 divcld NN+1N
29 24 nnne0d NN+10
30 25 26 29 27 divne0d NN+1N0
31 28 30 logcld NlogN+1N
32 2cnd N2
33 2rp 2+
34 33 a1i N2+
35 34 rpne0d N20
36 31 32 35 divrec2d NlogN+1N2=12logN+1N
37 36 oveq1d NlogN+1N2+NlogN+1N=12logN+1N+NlogN+1N
38 1cnd N1
39 38 halfcld N12
40 39 26 31 adddird N12+NlogN+1N=12logN+1N+NlogN+1N
41 26 32 35 divcan4d N N22=N
42 26 32 mulcomd N N2=2 N
43 42 oveq1d N N22=2 N2
44 41 43 eqtr3d NN=2 N2
45 44 oveq2d N12+N=12+2 N2
46 32 26 mulcld N2 N
47 38 46 32 35 divdird N1+2 N2=12+2 N2
48 45 47 eqtr4d N12+N=1+2 N2
49 48 oveq1d N12+NlogN+1N=1+2 N2logN+1N
50 40 49 eqtr3d N12logN+1N+NlogN+1N=1+2 N2logN+1N
51 23 37 50 3eqtrd NlogN+1NN+1NN=1+2 N2logN+1N
52 loge loge=1
53 52 a1i Nloge=1
54 51 53 oveq12d NlogN+1NN+1NNloge=1+2 N2logN+1N1
55 16 54 eqtrd NlogN+1NN+1NNe=1+2 N2logN+1N1
56 1 stirlinglem2 NAN+
57 56 relogcld NlogAN
58 nfcv _nN
59 nfcv _nlog
60 nfmpt1 _nnn!2nnen
61 1 60 nfcxfr _nA
62 61 58 nffv _nAN
63 59 62 nffv _nlogAN
64 2fveq3 n=NlogAn=logAN
65 58 63 64 2 fvmptf NlogANBN=logAN
66 57 65 mpdan NBN=logAN
67 nfcv _klogAn
68 nfcv _nk
69 61 68 nffv _nAk
70 59 69 nffv _nlogAk
71 2fveq3 n=klogAn=logAk
72 67 70 71 cbvmpt nlogAn=klogAk
73 2 72 eqtri B=klogAk
74 73 a1i NB=klogAk
75 simpr Nk=N+1k=N+1
76 75 fveq2d Nk=N+1Ak=AN+1
77 76 fveq2d Nk=N+1logAk=logAN+1
78 1 stirlinglem2 N+1AN+1+
79 24 78 syl NAN+1+
80 79 relogcld NlogAN+1
81 74 77 24 80 fvmptd NBN+1=logAN+1
82 66 81 oveq12d NBNBN+1=logANlogAN+1
83 56 79 relogdivd NlogANAN+1=logANlogAN+1
84 faccl N0N!
85 nnrp N!N!+
86 5 84 85 3syl NN!+
87 34 8 rpmulcld N2 N+
88 87 rpsqrtcld N2 N+
89 8 15 rpdivcld NNe+
90 89 11 rpexpcld NNeN+
91 88 90 rpmulcld N2 NNeN+
92 86 91 rpdivcld NN!2 NNeN+
93 1 a1i NN!2 NNeN+A=nn!2nnen
94 simpr NN!2 NNeN+n=Nn=N
95 94 fveq2d NN!2 NNeN+n=Nn!=N!
96 94 oveq2d NN!2 NNeN+n=N2n=2 N
97 96 fveq2d NN!2 NNeN+n=N2n=2 N
98 94 oveq1d NN!2 NNeN+n=Nne=Ne
99 98 94 oveq12d NN!2 NNeN+n=Nnen=NeN
100 97 99 oveq12d NN!2 NNeN+n=N2nnen=2 NNeN
101 95 100 oveq12d NN!2 NNeN+n=Nn!2nnen=N!2 NNeN
102 simpl NN!2 NNeN+N
103 86 rpcnd NN!
104 103 adantr NN!2 NNeN+N!
105 2cnd NN!2 NNeN+2
106 102 nncnd NN!2 NNeN+N
107 105 106 mulcld NN!2 NNeN+2 N
108 107 sqrtcld NN!2 NNeN+2 N
109 ere e
110 109 recni e
111 110 a1i NN!2 NNeN+e
112 0re 0
113 epos 0<e
114 112 113 gtneii e0
115 114 a1i NN!2 NNeN+e0
116 106 111 115 divcld NN!2 NNeN+Ne
117 102 nnnn0d NN!2 NNeN+N0
118 116 117 expcld NN!2 NNeN+NeN
119 108 118 mulcld NN!2 NNeN+2 NNeN
120 88 rpne0d N2 N0
121 120 adantr NN!2 NNeN+2 N0
122 102 nnne0d NN!2 NNeN+N0
123 106 111 122 115 divne0d NN!2 NNeN+Ne0
124 102 nnzd NN!2 NNeN+N
125 116 123 124 expne0d NN!2 NNeN+NeN0
126 108 118 121 125 mulne0d NN!2 NNeN+2 NNeN0
127 104 119 126 divcld NN!2 NNeN+N!2 NNeN
128 93 101 102 127 fvmptd NN!2 NNeN+AN=N!2 NNeN
129 92 128 mpdan NAN=N!2 NNeN
130 nfcv _kn!2nnen
131 nfcv _nk!2kkek
132 fveq2 n=kn!=k!
133 oveq2 n=k2n=2k
134 133 fveq2d n=k2n=2k
135 oveq1 n=kne=ke
136 id n=kn=k
137 135 136 oveq12d n=knen=kek
138 134 137 oveq12d n=k2nnen=2kkek
139 132 138 oveq12d n=kn!2nnen=k!2kkek
140 130 131 139 cbvmpt nn!2nnen=kk!2kkek
141 1 140 eqtri A=kk!2kkek
142 141 a1i NA=kk!2kkek
143 75 fveq2d Nk=N+1k!=N+1!
144 75 oveq2d Nk=N+12k=2N+1
145 144 fveq2d Nk=N+12k=2N+1
146 75 oveq1d Nk=N+1ke=N+1e
147 146 75 oveq12d Nk=N+1kek=N+1eN+1
148 145 147 oveq12d Nk=N+12kkek=2N+1N+1eN+1
149 143 148 oveq12d Nk=N+1k!2kkek=N+1!2N+1N+1eN+1
150 24 nnnn0d NN+10
151 faccl N+10N+1!
152 nnrp N+1!N+1!+
153 150 151 152 3syl NN+1!+
154 34 7 rpmulcld N2N+1+
155 154 rpsqrtcld N2N+1+
156 7 15 rpdivcld NN+1e+
157 11 peano2zd NN+1
158 156 157 rpexpcld NN+1eN+1+
159 155 158 rpmulcld N2N+1N+1eN+1+
160 153 159 rpdivcld NN+1!2N+1N+1eN+1+
161 142 149 24 160 fvmptd NAN+1=N+1!2N+1N+1eN+1
162 129 161 oveq12d NANAN+1=N!2 NNeNN+1!2N+1N+1eN+1
163 facp1 N0N+1!=N!N+1
164 5 163 syl NN+1!=N!N+1
165 164 oveq1d NN+1!2N+1N+1eN+1=N!N+12N+1N+1eN+1
166 159 rpcnd N2N+1N+1eN+1
167 159 rpne0d N2N+1N+1eN+10
168 103 25 166 167 divassd NN!N+12N+1N+1eN+1=N!N+12N+1N+1eN+1
169 165 168 eqtrd NN+1!2N+1N+1eN+1=N!N+12N+1N+1eN+1
170 169 oveq2d NN!2 NNeNN+1!2N+1N+1eN+1=N!2 NNeNN!N+12N+1N+1eN+1
171 91 rpcnd N2 NNeN
172 25 166 167 divcld NN+12N+1N+1eN+1
173 103 172 mulcld NN!N+12N+1N+1eN+1
174 91 rpne0d N2 NNeN0
175 86 rpne0d NN!0
176 25 166 29 167 divne0d NN+12N+1N+1eN+10
177 103 172 175 176 mulne0d NN!N+12N+1N+1eN+10
178 103 171 173 174 177 divdiv32d NN!2 NNeNN!N+12N+1N+1eN+1=N!N!N+12N+1N+1eN+12 NNeN
179 103 103 172 175 176 divdiv1d NN!N!N+12N+1N+1eN+1=N!N!N+12N+1N+1eN+1
180 179 eqcomd NN!N!N+12N+1N+1eN+1=N!N!N+12N+1N+1eN+1
181 180 oveq1d NN!N!N+12N+1N+1eN+12 NNeN=N!N!N+12N+1N+1eN+12 NNeN
182 103 175 dividd NN!N!=1
183 182 oveq1d NN!N!N+12N+1N+1eN+1=1N+12N+1N+1eN+1
184 183 oveq1d NN!N!N+12N+1N+1eN+12 NNeN=1N+12N+1N+1eN+12 NNeN
185 25 166 29 167 recdivd N1N+12N+1N+1eN+1=2N+1N+1eN+1N+1
186 185 oveq1d N1N+12N+1N+1eN+12 NNeN=2N+1N+1eN+1N+12 NNeN
187 166 25 29 divcld N2N+1N+1eN+1N+1
188 88 rpcnd N2 N
189 90 rpcnd NNeN
190 90 rpne0d NNeN0
191 187 188 189 120 190 divdiv1d N2N+1N+1eN+1N+12 NNeN=2N+1N+1eN+1N+12 NNeN
192 166 25 188 29 120 divdiv32d N2N+1N+1eN+1N+12 N=2N+1N+1eN+12 NN+1
193 155 rpcnd N2N+1
194 158 rpcnd NN+1eN+1
195 193 194 188 120 div23d N2N+1N+1eN+12 N=2N+12 NN+1eN+1
196 34 rpred N2
197 34 rpge0d N02
198 24 nnred NN+1
199 150 nn0ge0d N0N+1
200 196 197 198 199 sqrtmuld N2N+1=2N+1
201 196 197 4 6 sqrtmuld N2 N=2N
202 200 201 oveq12d N2N+12 N=2N+12N
203 32 sqrtcld N2
204 25 sqrtcld NN+1
205 26 sqrtcld NN
206 34 rpsqrtcld N2+
207 206 rpne0d N20
208 8 rpsqrtcld NN+
209 208 rpne0d NN0
210 203 203 204 205 207 209 divmuldivd N22N+1N=2N+12N
211 203 207 dividd N22=1
212 198 199 8 sqrtdivd NN+1N=N+1N
213 212 eqcomd NN+1N=N+1N
214 211 213 oveq12d N22N+1N=1N+1N
215 202 210 214 3eqtr2d N2N+12 N=1N+1N
216 215 oveq1d N2N+12 NN+1eN+1=1N+1NN+1eN+1
217 28 sqrtcld NN+1N
218 217 mullidd N1N+1N=N+1N
219 218 oveq1d N1N+1NN+1eN+1=N+1NN+1eN+1
220 195 216 219 3eqtrd N2N+1N+1eN+12 N=N+1NN+1eN+1
221 220 oveq1d N2N+1N+1eN+12 NN+1=N+1NN+1eN+1N+1
222 192 221 eqtrd N2N+1N+1eN+1N+12 N=N+1NN+1eN+1N+1
223 222 oveq1d N2N+1N+1eN+1N+12 NNeN=N+1NN+1eN+1N+1NeN
224 191 223 eqtr3d N2N+1N+1eN+1N+12 NNeN=N+1NN+1eN+1N+1NeN
225 217 194 mulcld NN+1NN+1eN+1
226 225 25 189 29 190 divdiv32d NN+1NN+1eN+1N+1NeN=N+1NN+1eN+1NeNN+1
227 217 194 189 190 divassd NN+1NN+1eN+1NeN=N+1NN+1eN+1NeN
228 15 rpcnd Ne
229 15 rpne0d Ne0
230 25 228 229 150 expdivd NN+1eN+1=N+1N+1eN+1
231 26 228 229 5 expdivd NNeN=NNeN
232 230 231 oveq12d NN+1eN+1NeN=N+1N+1eN+1NNeN
233 232 oveq2d NN+1NN+1eN+1NeN=N+1NN+1N+1eN+1NNeN
234 25 150 expcld NN+1N+1
235 228 150 expcld NeN+1
236 26 5 expcld NNN
237 228 5 expcld NeN
238 228 229 157 expne0d NeN+10
239 228 229 11 expne0d NeN0
240 26 27 11 expne0d NNN0
241 234 235 236 237 238 239 240 divdivdivd NN+1N+1eN+1NNeN=N+1N+1eNeN+1NN
242 234 237 mulcomd NN+1N+1eN=eNN+1N+1
243 242 oveq1d NN+1N+1eNeN+1NN=eNN+1N+1eN+1NN
244 237 235 234 236 238 240 divmuldivd NeNeN+1N+1N+1NN=eNN+1N+1eN+1NN
245 228 5 expp1d NeN+1=eNe
246 245 oveq2d NeNeN+1=eNeNe
247 237 237 228 239 229 divdiv1d NeNeNe=eNeNe
248 237 239 dividd NeNeN=1
249 248 oveq1d NeNeNe=1e
250 246 247 249 3eqtr2d NeNeN+1=1e
251 250 oveq1d NeNeN+1N+1N+1NN=1eN+1N+1NN
252 244 251 eqtr3d NeNN+1N+1eN+1NN=1eN+1N+1NN
253 241 243 252 3eqtrd NN+1N+1eN+1NNeN=1eN+1N+1NN
254 253 oveq2d NN+1NN+1N+1eN+1NNeN=N+1N1eN+1N+1NN
255 227 233 254 3eqtrd NN+1NN+1eN+1NeN=N+1N1eN+1N+1NN
256 255 oveq1d NN+1NN+1eN+1NeNN+1=N+1N1eN+1N+1NNN+1
257 234 236 240 divcld NN+1N+1NN
258 38 228 257 229 div32d N1eN+1N+1NN=1N+1N+1NNe
259 257 228 229 divcld NN+1N+1NNe
260 259 mullidd N1N+1N+1NNe=N+1N+1NNe
261 258 260 eqtrd N1eN+1N+1NN=N+1N+1NNe
262 261 oveq2d NN+1NN+11eN+1N+1NN=N+1NN+1N+1N+1NNe
263 228 229 reccld N1e
264 263 257 mulcld N1eN+1N+1NN
265 217 264 25 29 div23d NN+1N1eN+1N+1NNN+1=N+1NN+11eN+1N+1NN
266 217 25 29 divcld NN+1NN+1
267 266 257 228 229 divassd NN+1NN+1N+1N+1NNe=N+1NN+1N+1N+1NNe
268 262 265 267 3eqtr4d NN+1N1eN+1N+1NNN+1=N+1NN+1N+1N+1NNe
269 226 256 268 3eqtrd NN+1NN+1eN+1N+1NeN=N+1NN+1N+1N+1NNe
270 186 224 269 3eqtrd N1N+12N+1N+1eN+12 NNeN=N+1NN+1N+1N+1NNe
271 181 184 270 3eqtrd NN!N!N+12N+1N+1eN+12 NNeN=N+1NN+1N+1N+1NNe
272 170 178 271 3eqtrd NN!2 NNeNN+1!2N+1N+1eN+1=N+1NN+1N+1N+1NNe
273 217 25 257 29 div32d NN+1NN+1N+1N+1NN=N+1NN+1N+1NNN+1
274 25 5 expp1d NN+1N+1=N+1NN+1
275 274 oveq1d NN+1N+1N+1=N+1NN+1N+1
276 25 5 expcld NN+1N
277 276 25 29 divcan4d NN+1NN+1N+1=N+1N
278 275 277 eqtrd NN+1N+1N+1=N+1N
279 278 oveq1d NN+1N+1N+1NN=N+1NNN
280 234 236 25 240 29 divdiv32d NN+1N+1NNN+1=N+1N+1N+1NN
281 25 26 27 5 expdivd NN+1NN=N+1NNN
282 279 280 281 3eqtr4d NN+1N+1NNN+1=N+1NN
283 282 oveq2d NN+1NN+1N+1NNN+1=N+1NN+1NN
284 273 283 eqtrd NN+1NN+1N+1N+1NN=N+1NN+1NN
285 284 oveq1d NN+1NN+1N+1N+1NNe=N+1NN+1NNe
286 162 272 285 3eqtrd NANAN+1=N+1NN+1NNe
287 286 fveq2d NlogANAN+1=logN+1NN+1NNe
288 82 83 287 3eqtr2d NBNBN+1=logN+1NN+1NNe
289 38 46 addcld N1+2 N
290 289 halfcld N1+2 N2
291 290 31 mulcld N1+2 N2logN+1N
292 291 38 subcld N1+2 N2logN+1N1
293 3 a1i N1+2 N2logN+1N1J=n1+2n2logn+1n1
294 simpr N1+2 N2logN+1N1n=Nn=N
295 294 oveq2d N1+2 N2logN+1N1n=N2n=2 N
296 295 oveq2d N1+2 N2logN+1N1n=N1+2n=1+2 N
297 296 oveq1d N1+2 N2logN+1N1n=N1+2n2=1+2 N2
298 294 oveq1d N1+2 N2logN+1N1n=Nn+1=N+1
299 298 294 oveq12d N1+2 N2logN+1N1n=Nn+1n=N+1N
300 299 fveq2d N1+2 N2logN+1N1n=Nlogn+1n=logN+1N
301 297 300 oveq12d N1+2 N2logN+1N1n=N1+2n2logn+1n=1+2 N2logN+1N
302 301 oveq1d N1+2 N2logN+1N1n=N1+2n2logn+1n1=1+2 N2logN+1N1
303 simpl N1+2 N2logN+1N1N
304 simpr N1+2 N2logN+1N11+2 N2logN+1N1
305 293 302 303 304 fvmptd N1+2 N2logN+1N1JN=1+2 N2logN+1N1
306 292 305 mpdan NJN=1+2 N2logN+1N1
307 55 288 306 3eqtr4d NBNBN+1=JN