Metamath Proof Explorer


Theorem stirlinglem8

Description: If A converges to C , then F converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem8.1 nφ
stirlinglem8.2 _nA
stirlinglem8.3 _nD
stirlinglem8.4 D=nA2n
stirlinglem8.5 φA:+
stirlinglem8.6 F=nAn4Dn2
stirlinglem8.7 L=nAn4
stirlinglem8.8 M=nDn2
stirlinglem8.9 φnDn+
stirlinglem8.10 φC+
stirlinglem8.11 φAC
Assertion stirlinglem8 φFC2

Proof

Step Hyp Ref Expression
1 stirlinglem8.1 nφ
2 stirlinglem8.2 _nA
3 stirlinglem8.3 _nD
4 stirlinglem8.4 D=nA2n
5 stirlinglem8.5 φA:+
6 stirlinglem8.6 F=nAn4Dn2
7 stirlinglem8.7 L=nAn4
8 stirlinglem8.8 M=nDn2
9 stirlinglem8.9 φnDn+
10 stirlinglem8.10 φC+
11 stirlinglem8.11 φAC
12 nfmpt1 _nnAn4
13 7 12 nfcxfr _nL
14 nfmpt1 _nnDn2
15 8 14 nfcxfr _nM
16 nfmpt1 _nnAn4Dn2
17 6 16 nfcxfr _nF
18 nnuz =1
19 1zzd φ1
20 rrpsscn +
21 fss A:++A:
22 5 20 21 sylancl φA:
23 4nn0 40
24 23 a1i φ40
25 nnex V
26 25 mptex nAn4V
27 7 26 eqeltri LV
28 27 a1i φLV
29 simpr φnn
30 5 ffvelcdmda φnAn+
31 30 rpcnd φnAn
32 23 a1i φn40
33 31 32 expcld φnAn4
34 7 fvmpt2 nAn4Ln=An4
35 29 33 34 syl2anc φnLn=An4
36 1 2 13 18 19 22 11 24 28 35 climexp φLC4
37 25 mptex nAn4Dn2V
38 6 37 eqeltri FV
39 38 a1i φFV
40 22 adantr φnA:
41 2nn 2
42 41 a1i n2
43 id nn
44 42 43 nnmulcld n2n
45 44 adantl φn2n
46 40 45 ffvelcdmd φnA2n
47 1 46 4 fmptdf φD:
48 nfmpt1 _nn2n
49 fex A:VAV
50 22 25 49 sylancl φAV
51 1nn 1
52 2cnd φ2
53 1cnd φ1
54 52 53 mulcld φ21
55 oveq2 n=12n=21
56 eqid n2n=n2n
57 55 56 fvmptg 121n2n1=21
58 51 54 57 sylancr φn2n1=21
59 41 a1i φ2
60 51 a1i φ1
61 59 60 nnmulcld φ21
62 58 61 eqeltrd φn2n1
63 1red n1
64 42 nnred n2
65 44 nnred n2n
66 42 nnge1d n12
67 63 64 65 66 leadd2dd n2n+12n+2
68 56 fvmpt2 n2nn2nn=2n
69 44 68 mpdan nn2nn=2n
70 69 oveq1d nn2nn+1=2n+1
71 oveq2 n=k2n=2k
72 71 cbvmptv n2n=k2k
73 72 a1i nn2n=k2k
74 simpr nk=n+1k=n+1
75 74 oveq2d nk=n+12k=2n+1
76 peano2nn nn+1
77 42 76 nnmulcld n2n+1
78 73 75 76 77 fvmptd nn2nn+1=2n+1
79 2cnd n2
80 nncn nn
81 1cnd n1
82 79 80 81 adddid n2n+1=2n+21
83 79 mulridd n21=2
84 83 oveq2d n2n+21=2n+2
85 78 82 84 3eqtrd nn2nn+1=2n+2
86 67 70 85 3brtr4d nn2nn+1n2nn+1
87 44 nnzd n2n
88 69 87 eqeltrd nn2nn
89 88 peano2zd nn2nn+1
90 77 nnzd n2n+1
91 78 90 eqeltrd nn2nn+1
92 eluz n2nn+1n2nn+1n2nn+1n2nn+1n2nn+1n2nn+1
93 89 91 92 syl2anc nn2nn+1n2nn+1n2nn+1n2nn+1
94 86 93 mpbird nn2nn+1n2nn+1
95 94 adantl φnn2nn+1n2nn+1
96 25 mptex nA2nV
97 4 96 eqeltri DV
98 97 a1i φDV
99 4 fvmpt2 nA2nDn=A2n
100 29 46 99 syl2anc φnDn=A2n
101 69 adantl φnn2nn=2n
102 101 eqcomd φn2n=n2nn
103 102 fveq2d φnA2n=An2nn
104 100 103 eqtrd φnDn=An2nn
105 1 2 3 48 18 19 50 31 11 62 95 98 104 climsuse φDC
106 2nn0 20
107 106 a1i φ20
108 25 mptex nDn2V
109 8 108 eqeltri MV
110 109 a1i φMV
111 9 rpcnd φnDn
112 111 sqcld φnDn2
113 8 fvmpt2 nDn2Mn=Dn2
114 29 112 113 syl2anc φnMn=Dn2
115 1 3 15 18 19 47 105 107 110 114 climexp φMC2
116 10 rpcnd φC
117 10 rpne0d φC0
118 2z 2
119 118 a1i φ2
120 116 117 119 expne0d φC20
121 1 33 7 fmptdf φL:
122 121 ffvelcdmda φnLn
123 114 112 eqeltrd φnMn
124 100 oveq1d φnDn2=A2n2
125 114 124 eqtrd φnMn=A2n2
126 100 9 eqeltrrd φnA2n+
127 118 a1i φn2
128 126 127 rpexpcld φnA2n2+
129 125 128 eqeltrd φnMn+
130 129 rpne0d φnMn0
131 130 neneqd φn¬Mn=0
132 0cn 0
133 elsn2g 0Mn0Mn=0
134 132 133 ax-mp Mn0Mn=0
135 131 134 sylnibr φn¬Mn0
136 123 135 eldifd φnMn0
137 32 nn0zd φn4
138 30 137 rpexpcld φnAn4+
139 9 127 rpexpcld φnDn2+
140 138 139 rpdivcld φnAn4Dn2+
141 6 fvmpt2 nAn4Dn2+Fn=An4Dn2
142 29 140 141 syl2anc φnFn=An4Dn2
143 7 fvmpt2 nAn4+Ln=An4
144 29 138 143 syl2anc φnLn=An4
145 144 114 oveq12d φnLnMn=An4Dn2
146 142 145 eqtr4d φnFn=LnMn
147 1 13 15 17 18 19 36 39 115 120 122 136 146 climdivf φFC4C2
148 2cn 2
149 2p2e4 2+2=4
150 148 148 149 mvlladdi 2=42
151 150 a1i φ2=42
152 151 oveq2d φC2=C42
153 24 nn0zd φ4
154 116 117 119 153 expsubd φC42=C4C2
155 152 154 eqtrd φC2=C4C2
156 147 155 breqtrrd φFC2