Metamath Proof Explorer


Theorem stoweidlem3

Description: Lemma for stoweid : if A is positive and all M terms of a finite product are larger than A , then the finite product is larger than A ^ M . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem3.1 _iF
stoweidlem3.2 iφ
stoweidlem3.3 X=seq1×F
stoweidlem3.4 φM
stoweidlem3.5 φF:1M
stoweidlem3.6 φi1MA<Fi
stoweidlem3.7 φA+
Assertion stoweidlem3 φAM<XM

Proof

Step Hyp Ref Expression
1 stoweidlem3.1 _iF
2 stoweidlem3.2 iφ
3 stoweidlem3.3 X=seq1×F
4 stoweidlem3.4 φM
5 stoweidlem3.5 φF:1M
6 stoweidlem3.6 φi1MA<Fi
7 stoweidlem3.7 φA+
8 elnnuz MM1
9 4 8 sylib φM1
10 eluzfz2 M1M1M
11 9 10 syl φM1M
12 oveq2 n=1An=A1
13 fveq2 n=1Xn=X1
14 12 13 breq12d n=1An<XnA1<X1
15 14 imbi2d n=1φAn<XnφA1<X1
16 oveq2 n=mAn=Am
17 fveq2 n=mXn=Xm
18 16 17 breq12d n=mAn<XnAm<Xm
19 18 imbi2d n=mφAn<XnφAm<Xm
20 oveq2 n=m+1An=Am+1
21 fveq2 n=m+1Xn=Xm+1
22 20 21 breq12d n=m+1An<XnAm+1<Xm+1
23 22 imbi2d n=m+1φAn<XnφAm+1<Xm+1
24 oveq2 n=MAn=AM
25 fveq2 n=MXn=XM
26 24 25 breq12d n=MAn<XnAM<XM
27 26 imbi2d n=MφAn<XnφAM<XM
28 1zzd φ1
29 4 nnzd φM
30 1le1 11
31 30 a1i φ11
32 4 nnge1d φ1M
33 28 29 28 31 32 elfzd φ11M
34 33 ancli φφ11M
35 nfv i11M
36 2 35 nfan iφ11M
37 nfcv _iA
38 nfcv _i<
39 nfcv _i1
40 1 39 nffv _iF1
41 37 38 40 nfbr iA<F1
42 36 41 nfim iφ11MA<F1
43 eleq1 i=1i1M11M
44 43 anbi2d i=1φi1Mφ11M
45 fveq2 i=1Fi=F1
46 45 breq2d i=1A<FiA<F1
47 44 46 imbi12d i=1φi1MA<Fiφ11MA<F1
48 42 47 6 vtoclg1f 11Mφ11MA<F1
49 33 34 48 sylc φA<F1
50 7 rpcnd φA
51 50 exp1d φA1=A
52 3 fveq1i X1=seq1×F1
53 1z 1
54 seq1 1seq1×F1=F1
55 53 54 ax-mp seq1×F1=F1
56 52 55 eqtri X1=F1
57 56 a1i φX1=F1
58 49 51 57 3brtr4d φA1<X1
59 58 a1i M1φA1<X1
60 7 3ad2ant3 m1..^MφAm<XmφA+
61 60 rpred m1..^MφAm<XmφA
62 elfzouz m1..^Mm1
63 elnnuz mm1
64 nnnn0 mm0
65 63 64 sylbir m1m0
66 62 65 syl m1..^Mm0
67 66 3ad2ant1 m1..^MφAm<Xmφm0
68 61 67 reexpcld m1..^MφAm<XmφAm
69 3 fveq1i Xm=seq1×Fm
70 62 adantr m1..^Mφm1
71 nfv im1..^M
72 71 2 nfan im1..^Mφ
73 nfv ia1m
74 72 73 nfan im1..^Mφa1m
75 nfcv _ia
76 1 75 nffv _iFa
77 76 nfel1 iFa
78 74 77 nfim im1..^Mφa1mFa
79 eleq1 i=ai1ma1m
80 79 anbi2d i=am1..^Mφi1mm1..^Mφa1m
81 fveq2 i=aFi=Fa
82 81 eleq1d i=aFiFa
83 80 82 imbi12d i=am1..^Mφi1mFim1..^Mφa1mFa
84 5 ad2antlr m1..^Mφi1mF:1M
85 1zzd m1..^Mφi1m1
86 29 ad2antlr m1..^Mφi1mM
87 elfzelz i1mi
88 87 adantl m1..^Mφi1mi
89 elfzle1 i1m1i
90 89 adantl m1..^Mφi1m1i
91 87 zred i1mi
92 91 adantl m1..^Mφi1mi
93 elfzoelz m1..^Mm
94 93 zred m1..^Mm
95 94 ad2antrr m1..^Mφi1mm
96 4 nnred φM
97 96 ad2antlr m1..^Mφi1mM
98 elfzle2 i1mim
99 98 adantl m1..^Mφi1mim
100 elfzoel2 m1..^MM
101 100 zred m1..^MM
102 elfzolt2 m1..^Mm<M
103 94 101 102 ltled m1..^MmM
104 103 ad2antrr m1..^Mφi1mmM
105 92 95 97 99 104 letrd m1..^Mφi1miM
106 85 86 88 90 105 elfzd m1..^Mφi1mi1M
107 84 106 ffvelcdmd m1..^Mφi1mFi
108 78 83 107 chvarfv m1..^Mφa1mFa
109 remulcl ajaj
110 109 adantl m1..^Mφajaj
111 70 108 110 seqcl m1..^Mφseq1×Fm
112 69 111 eqeltrid m1..^MφXm
113 112 3adant2 m1..^MφAm<XmφXm
114 5 3ad2ant3 m1..^MφAm<XmφF:1M
115 fzofzp1 m1..^Mm+11M
116 115 3ad2ant1 m1..^MφAm<Xmφm+11M
117 114 116 ffvelcdmd m1..^MφAm<XmφFm+1
118 7 rpge0d φ0A
119 118 3ad2ant3 m1..^MφAm<Xmφ0A
120 61 67 119 expge0d m1..^MφAm<Xmφ0Am
121 simp3 m1..^MφAm<Xmφφ
122 simp2 m1..^MφAm<XmφφAm<Xm
123 121 122 mpd m1..^MφAm<XmφAm<Xm
124 115 adantr m1..^Mφm+11M
125 simpr m1..^Mφφ
126 125 124 jca m1..^Mφφm+11M
127 nfv im+11M
128 2 127 nfan iφm+11M
129 nfcv _im+1
130 1 129 nffv _iFm+1
131 37 38 130 nfbr iA<Fm+1
132 128 131 nfim iφm+11MA<Fm+1
133 eleq1 i=m+1i1Mm+11M
134 133 anbi2d i=m+1φi1Mφm+11M
135 fveq2 i=m+1Fi=Fm+1
136 135 breq2d i=m+1A<FiA<Fm+1
137 134 136 imbi12d i=m+1φi1MA<Fiφm+11MA<Fm+1
138 132 137 6 vtoclg1f m+11Mφm+11MA<Fm+1
139 124 126 138 sylc m1..^MφA<Fm+1
140 139 3adant2 m1..^MφAm<XmφA<Fm+1
141 68 113 61 117 120 123 119 140 ltmul12ad m1..^MφAm<XmφAmA<XmFm+1
142 50 3ad2ant3 m1..^MφAm<XmφA
143 142 67 expp1d m1..^MφAm<XmφAm+1=AmA
144 3 fveq1i Xm+1=seq1×Fm+1
145 144 a1i m1..^MφAm<XmφXm+1=seq1×Fm+1
146 62 3ad2ant1 m1..^MφAm<Xmφm1
147 seqp1 m1seq1×Fm+1=seq1×FmFm+1
148 146 147 syl m1..^MφAm<Xmφseq1×Fm+1=seq1×FmFm+1
149 69 a1i m1..^MφAm<XmφXm=seq1×Fm
150 149 eqcomd m1..^MφAm<Xmφseq1×Fm=Xm
151 150 oveq1d m1..^MφAm<Xmφseq1×FmFm+1=XmFm+1
152 145 148 151 3eqtrd m1..^MφAm<XmφXm+1=XmFm+1
153 141 143 152 3brtr4d m1..^MφAm<XmφAm+1<Xm+1
154 153 3exp m1..^MφAm<XmφAm+1<Xm+1
155 15 19 23 27 59 154 fzind2 M1MφAM<XM
156 11 155 mpcom φAM<XM