Metamath Proof Explorer


Theorem subsaliuncl

Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses subsaliuncl.1 φSSAlg
subsaliuncl.2 φDV
subsaliuncl.3 T=S𝑡D
subsaliuncl.4 φF:T
Assertion subsaliuncl φnFnT

Proof

Step Hyp Ref Expression
1 subsaliuncl.1 φSSAlg
2 subsaliuncl.2 φDV
3 subsaliuncl.3 T=S𝑡D
4 subsaliuncl.4 φF:T
5 eqid xS|Fn=xD=xS|Fn=xD
6 5 1 rabexd φxS|Fn=xDV
7 6 ralrimivw φnxS|Fn=xDV
8 eqid nxS|Fn=xD=nxS|Fn=xD
9 8 fnmpt nxS|Fn=xDVnxS|Fn=xDFn
10 7 9 syl φnxS|Fn=xDFn
11 nnex V
12 fnrndomg VnxS|Fn=xDFnrannxS|Fn=xD
13 11 12 ax-mp nxS|Fn=xDFnrannxS|Fn=xD
14 10 13 syl φrannxS|Fn=xD
15 nnenom ω
16 15 a1i φω
17 domentr rannxS|Fn=xDωrannxS|Fn=xDω
18 14 16 17 syl2anc φrannxS|Fn=xDω
19 vex yV
20 8 elrnmpt yVyrannxS|Fn=xDny=xS|Fn=xD
21 19 20 ax-mp yrannxS|Fn=xDny=xS|Fn=xD
22 21 biimpi yrannxS|Fn=xDny=xS|Fn=xD
23 22 adantl φyrannxS|Fn=xDny=xS|Fn=xD
24 simp3 φny=xS|Fn=xDy=xS|Fn=xD
25 4 ffvelcdmda φnFnT
26 25 3 eleqtrdi φnFnS𝑡D
27 2 elexd φDV
28 elrest SSAlgDVFnS𝑡DxSFn=xD
29 1 27 28 syl2anc φFnS𝑡DxSFn=xD
30 29 adantr φnFnS𝑡DxSFn=xD
31 26 30 mpbid φnxSFn=xD
32 rabn0 xS|Fn=xDxSFn=xD
33 31 32 sylibr φnxS|Fn=xD
34 33 3adant3 φny=xS|Fn=xDxS|Fn=xD
35 24 34 eqnetrd φny=xS|Fn=xDy
36 35 3exp φny=xS|Fn=xDy
37 36 rexlimdv φny=xS|Fn=xDy
38 37 adantr φyrannxS|Fn=xDny=xS|Fn=xDy
39 23 38 mpd φyrannxS|Fn=xDy
40 18 39 axccdom φffFnrannxS|Fn=xDyrannxS|Fn=xDfyy
41 simpl φfFnrannxS|Fn=xDyrannxS|Fn=xDfyyφ
42 fveq2 n=mFn=Fm
43 42 eqeq1d n=mFn=xDFm=xD
44 43 rabbidv n=mxS|Fn=xD=xS|Fm=xD
45 44 cbvmptv nxS|Fn=xD=mxS|Fm=xD
46 45 rneqi rannxS|Fn=xD=ranmxS|Fm=xD
47 46 fneq2i fFnrannxS|Fn=xDfFnranmxS|Fm=xD
48 47 biimpi fFnrannxS|Fn=xDfFnranmxS|Fm=xD
49 48 ad2antrl φfFnrannxS|Fn=xDyrannxS|Fn=xDfyyfFnranmxS|Fm=xD
50 46 raleqi yrannxS|Fn=xDfyyyranmxS|Fm=xDfyy
51 50 biimpi yrannxS|Fn=xDfyyyranmxS|Fm=xDfyy
52 51 adantl φyrannxS|Fn=xDfyyyranmxS|Fm=xDfyy
53 52 adantrl φfFnrannxS|Fn=xDyrannxS|Fn=xDfyyyranmxS|Fm=xDfyy
54 nfv zφfFnranmxS|Fm=xDyranmxS|Fm=xDfyy
55 1 3ad2ant1 φfFnranmxS|Fm=xDyranmxS|Fm=xDfyySSAlg
56 ineq1 x=zxD=zD
57 56 eqeq2d x=zFm=xDFm=zD
58 57 cbvrabv xS|Fm=xD=zS|Fm=zD
59 58 mpteq2i mxS|Fm=xD=mzS|Fm=zD
60 45 59 eqtr2i mzS|Fm=zD=nxS|Fn=xD
61 60 coeq2i fmzS|Fm=zD=fnxS|Fn=xD
62 47 biimpri fFnranmxS|Fm=xDfFnrannxS|Fn=xD
63 62 3ad2ant2 φfFnranmxS|Fm=xDyranmxS|Fm=xDfyyfFnrannxS|Fn=xD
64 46 eqcomi ranmxS|Fm=xD=rannxS|Fn=xD
65 64 raleqi yranmxS|Fm=xDfyyyrannxS|Fn=xDfyy
66 fveq2 y=zfy=fz
67 id y=zy=z
68 66 67 eleq12d y=zfyyfzz
69 68 cbvralvw yrannxS|Fn=xDfyyzrannxS|Fn=xDfzz
70 65 69 bitri yranmxS|Fm=xDfyyzrannxS|Fn=xDfzz
71 70 biimpi yranmxS|Fm=xDfyyzrannxS|Fn=xDfzz
72 71 3ad2ant3 φfFnranmxS|Fm=xDyranmxS|Fm=xDfyyzrannxS|Fn=xDfzz
73 54 55 8 61 63 72 subsaliuncllem φfFnranmxS|Fm=xDyranmxS|Fm=xDfyyeSnFn=enD
74 41 49 53 73 syl3anc φfFnrannxS|Fn=xDyrannxS|Fn=xDfyyeSnFn=enD
75 74 ex φfFnrannxS|Fn=xDyrannxS|Fn=xDfyyeSnFn=enD
76 75 exlimdv φffFnrannxS|Fn=xDyrannxS|Fn=xDfyyeSnFn=enD
77 40 76 mpd φeSnFn=enD
78 1 3ad2ant1 φeSnFn=enDSSAlg
79 27 3ad2ant1 φeSnFn=enDDV
80 1 adantr φeSSSAlg
81 nnct ω
82 81 a1i φeSω
83 elmapi eSe:S
84 83 adantl φeSe:S
85 84 ffvelcdmda φeSnenS
86 80 82 85 saliuncl φeSnenS
87 86 3adant3 φeSnFn=enDnenS
88 eqid nenD=nenD
89 78 79 87 88 elrestd φeSnFn=enDnenDS𝑡D
90 nfra1 nnFn=enD
91 rspa nFn=enDnFn=enD
92 90 91 iuneq2df nFn=enDnFn=nenD
93 iunin1 nenD=nenD
94 93 a1i nFn=enDnenD=nenD
95 92 94 eqtrd nFn=enDnFn=nenD
96 95 3ad2ant3 φeSnFn=enDnFn=nenD
97 3 a1i φeSnFn=enDT=S𝑡D
98 96 97 eleq12d φeSnFn=enDnFnTnenDS𝑡D
99 89 98 mpbird φeSnFn=enDnFnT
100 99 3exp φeSnFn=enDnFnT
101 100 rexlimdv φeSnFn=enDnFnT
102 77 101 mpd φnFnT