Metamath Proof Explorer


Theorem tsmsfbas

Description: The collection of all sets of the form F ( z ) = { y e. S | z C_ y } , which can be read as the set of all finite subsets of A which contain z as a subset, for each finite subset z of A , form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmsfbas.s S=𝒫AFin
tsmsfbas.f F=zSyS|zy
tsmsfbas.l L=ranF
tsmsfbas.a φAW
Assertion tsmsfbas φLfBasS

Proof

Step Hyp Ref Expression
1 tsmsfbas.s S=𝒫AFin
2 tsmsfbas.f F=zSyS|zy
3 tsmsfbas.l L=ranF
4 tsmsfbas.a φAW
5 elex AWAV
6 ssrab2 yS|zyS
7 pwexg AV𝒫AV
8 inex1g 𝒫AV𝒫AFinV
9 7 8 syl AV𝒫AFinV
10 1 9 eqeltrid AVSV
11 10 adantr AVzSSV
12 elpw2g SVyS|zy𝒫SyS|zyS
13 11 12 syl AVzSyS|zy𝒫SyS|zyS
14 6 13 mpbiri AVzSyS|zy𝒫S
15 14 2 fmptd AVF:S𝒫S
16 15 frnd AVranF𝒫S
17 0ss A
18 0fin Fin
19 elfpw 𝒫AFinAFin
20 17 18 19 mpbir2an 𝒫AFin
21 20 1 eleqtrri S
22 0ss y
23 22 rgenw ySy
24 rabid2 S=yS|zyySzy
25 sseq1 z=zyy
26 25 ralbidv z=ySzyySy
27 24 26 bitrid z=S=yS|zyySy
28 27 rspcev SySyzSS=yS|zy
29 21 23 28 mp2an zSS=yS|zy
30 2 elrnmpt SVSranFzSS=yS|zy
31 10 30 syl AVSranFzSS=yS|zy
32 29 31 mpbiri AVSranF
33 32 ne0d AVranF
34 simpr AVzSzS
35 ssid zz
36 sseq2 y=zzyzz
37 36 rspcev zSzzySzy
38 34 35 37 sylancl AVzSySzy
39 rabn0 yS|zyySzy
40 38 39 sylibr AVzSyS|zy
41 40 necomd AVzSyS|zy
42 41 neneqd AVzS¬=yS|zy
43 42 nrexdv AV¬zS=yS|zy
44 0ex V
45 2 elrnmpt VranFzS=yS|zy
46 44 45 ax-mp ranFzS=yS|zy
47 43 46 sylnibr AV¬ranF
48 df-nel ranF¬ranF
49 47 48 sylibr AVranF
50 elfpw u𝒫AFinuAuFin
51 50 simplbi u𝒫AFinuA
52 51 1 eleq2s uSuA
53 elfpw v𝒫AFinvAvFin
54 53 simplbi v𝒫AFinvA
55 54 1 eleq2s vSvA
56 52 55 anim12i uSvSuAvA
57 unss uAvAuvA
58 56 57 sylib uSvSuvA
59 elinel2 u𝒫AFinuFin
60 59 1 eleq2s uSuFin
61 elinel2 v𝒫AFinvFin
62 61 1 eleq2s vSvFin
63 unfi uFinvFinuvFin
64 60 62 63 syl2an uSvSuvFin
65 elfpw uv𝒫AFinuvAuvFin
66 58 64 65 sylanbrc uSvSuv𝒫AFin
67 66 adantl AVuSvSuv𝒫AFin
68 67 1 eleqtrrdi AVuSvSuvS
69 eqidd AVuSvSyS|uvy=yS|uvy
70 sseq1 a=uvayuvy
71 70 rabbidv a=uvyS|ay=yS|uvy
72 71 rspceeqv uvSyS|uvy=yS|uvyaSyS|uvy=yS|ay
73 68 69 72 syl2anc AVuSvSaSyS|uvy=yS|ay
74 10 adantr AVuSvSSV
75 rabexg SVyS|uvyV
76 74 75 syl AVuSvSyS|uvyV
77 sseq1 z=azyay
78 77 rabbidv z=ayS|zy=yS|ay
79 78 cbvmptv zSyS|zy=aSyS|ay
80 2 79 eqtri F=aSyS|ay
81 80 elrnmpt yS|uvyVyS|uvyranFaSyS|uvy=yS|ay
82 76 81 syl AVuSvSyS|uvyranFaSyS|uvy=yS|ay
83 73 82 mpbird AVuSvSyS|uvyranF
84 pwidg yS|uvyVyS|uvy𝒫yS|uvy
85 76 84 syl AVuSvSyS|uvy𝒫yS|uvy
86 inelcm yS|uvyranFyS|uvy𝒫yS|uvyranF𝒫yS|uvy
87 83 85 86 syl2anc AVuSvSranF𝒫yS|uvy
88 87 ralrimivva AVuSvSranF𝒫yS|uvy
89 rabexg SVyS|uyV
90 10 89 syl AVyS|uyV
91 90 ralrimivw AVuSyS|uyV
92 sseq1 z=uzyuy
93 92 rabbidv z=uyS|zy=yS|uy
94 93 cbvmptv zSyS|zy=uSyS|uy
95 2 94 eqtri F=uSyS|uy
96 ineq1 a=yS|uyayS|vy=yS|uyyS|vy
97 inrab yS|uyyS|vy=yS|uyvy
98 unss uyvyuvy
99 98 rabbii yS|uyvy=yS|uvy
100 97 99 eqtri yS|uyyS|vy=yS|uvy
101 96 100 eqtrdi a=yS|uyayS|vy=yS|uvy
102 101 pweqd a=yS|uy𝒫ayS|vy=𝒫yS|uvy
103 102 ineq2d a=yS|uyranF𝒫ayS|vy=ranF𝒫yS|uvy
104 103 neeq1d a=yS|uyranF𝒫ayS|vyranF𝒫yS|uvy
105 104 ralbidv a=yS|uyvSranF𝒫ayS|vyvSranF𝒫yS|uvy
106 95 105 ralrnmptw uSyS|uyVaranFvSranF𝒫ayS|vyuSvSranF𝒫yS|uvy
107 91 106 syl AVaranFvSranF𝒫ayS|vyuSvSranF𝒫yS|uvy
108 88 107 mpbird AVaranFvSranF𝒫ayS|vy
109 rabexg SVyS|vyV
110 10 109 syl AVyS|vyV
111 110 ralrimivw AVvSyS|vyV
112 sseq1 z=vzyvy
113 112 rabbidv z=vyS|zy=yS|vy
114 113 cbvmptv zSyS|zy=vSyS|vy
115 2 114 eqtri F=vSyS|vy
116 ineq2 b=yS|vyab=ayS|vy
117 116 pweqd b=yS|vy𝒫ab=𝒫ayS|vy
118 117 ineq2d b=yS|vyranF𝒫ab=ranF𝒫ayS|vy
119 118 neeq1d b=yS|vyranF𝒫abranF𝒫ayS|vy
120 115 119 ralrnmptw vSyS|vyVbranFranF𝒫abvSranF𝒫ayS|vy
121 111 120 syl AVbranFranF𝒫abvSranF𝒫ayS|vy
122 121 ralbidv AVaranFbranFranF𝒫abaranFvSranF𝒫ayS|vy
123 108 122 mpbird AVaranFbranFranF𝒫ab
124 33 49 123 3jca AVranFranFaranFbranFranF𝒫ab
125 isfbas SVranFfBasSranF𝒫SranFranFaranFbranFranF𝒫ab
126 10 125 syl AVranFfBasSranF𝒫SranFranFaranFbranFranF𝒫ab
127 16 124 126 mpbir2and AVranFfBasS
128 3 127 eqeltrid AVLfBasS
129 4 5 128 3syl φLfBasS