Metamath Proof Explorer


Theorem uvcresum

Description: Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015) (Proof shortened by Mario Carneiro, 5-Jul-2015)

Ref Expression
Hypotheses uvcresum.u U=RunitVecI
uvcresum.y Y=RfreeLModI
uvcresum.b B=BaseY
uvcresum.v ·˙=Y
Assertion uvcresum RRingIWXBX=YX·˙fU

Proof

Step Hyp Ref Expression
1 uvcresum.u U=RunitVecI
2 uvcresum.y Y=RfreeLModI
3 uvcresum.b B=BaseY
4 uvcresum.v ·˙=Y
5 eqid BaseR=BaseR
6 2 5 3 frlmbasf IWXBX:IBaseR
7 6 3adant1 RRingIWXBX:IBaseR
8 7 feqmptd RRingIWXBX=aIXa
9 eqid 0R=0R
10 simpl1 RRingIWXBaIRRing
11 ringmnd RRingRMnd
12 10 11 syl RRingIWXBaIRMnd
13 simpl2 RRingIWXBaIIW
14 simpr RRingIWXBaIaI
15 simpl2 RRingIWXBbIIW
16 7 ffvelcdmda RRingIWXBbIXbBaseR
17 1 2 3 uvcff RRingIWU:IB
18 17 3adant3 RRingIWXBU:IB
19 18 ffvelcdmda RRingIWXBbIUbB
20 eqid R=R
21 2 3 5 15 16 19 4 20 frlmvscafval RRingIWXBbIXb·˙Ub=I×XbRfUb
22 16 adantr RRingIWXBbIaIXbBaseR
23 2 5 3 frlmbasf IWUbBUb:IBaseR
24 15 19 23 syl2anc RRingIWXBbIUb:IBaseR
25 24 ffvelcdmda RRingIWXBbIaIUbaBaseR
26 fconstmpt I×Xb=aIXb
27 26 a1i RRingIWXBbII×Xb=aIXb
28 24 feqmptd RRingIWXBbIUb=aIUba
29 15 22 25 27 28 offval2 RRingIWXBbII×XbRfUb=aIXbRUba
30 21 29 eqtrd RRingIWXBbIXb·˙Ub=aIXbRUba
31 2 frlmlmod RRingIWYLMod
32 31 3adant3 RRingIWXBYLMod
33 32 adantr RRingIWXBbIYLMod
34 2 frlmsca RRingIWR=ScalarY
35 34 3adant3 RRingIWXBR=ScalarY
36 35 fveq2d RRingIWXBBaseR=BaseScalarY
37 36 adantr RRingIWXBbIBaseR=BaseScalarY
38 16 37 eleqtrd RRingIWXBbIXbBaseScalarY
39 eqid ScalarY=ScalarY
40 eqid BaseScalarY=BaseScalarY
41 3 39 4 40 lmodvscl YLModXbBaseScalarYUbBXb·˙UbB
42 33 38 19 41 syl3anc RRingIWXBbIXb·˙UbB
43 30 42 eqeltrrd RRingIWXBbIaIXbRUbaB
44 2 5 3 frlmbasf IWaIXbRUbaBaIXbRUba:IBaseR
45 15 43 44 syl2anc RRingIWXBbIaIXbRUba:IBaseR
46 45 fvmptelcdm RRingIWXBbIaIXbRUbaBaseR
47 46 an32s RRingIWXBaIbIXbRUbaBaseR
48 47 fmpttd RRingIWXBaIbIXbRUba:IBaseR
49 10 3ad2ant1 RRingIWXBaIbIbaRRing
50 13 3ad2ant1 RRingIWXBaIbIbaIW
51 simp2 RRingIWXBaIbIbabI
52 14 3ad2ant1 RRingIWXBaIbIbaaI
53 simp3 RRingIWXBaIbIbaba
54 1 49 50 51 52 53 9 uvcvv0 RRingIWXBaIbIbaUba=0R
55 54 oveq2d RRingIWXBaIbIbaXbRUba=XbR0R
56 16 adantlr RRingIWXBaIbIXbBaseR
57 56 3adant3 RRingIWXBaIbIbaXbBaseR
58 5 20 9 ringrz RRingXbBaseRXbR0R=0R
59 49 57 58 syl2anc RRingIWXBaIbIbaXbR0R=0R
60 55 59 eqtrd RRingIWXBaIbIbaXbRUba=0R
61 60 13 suppsssn RRingIWXBaIbIXbRUbasupp0Ra
62 5 9 12 13 14 48 61 gsumpt RRingIWXBaIRbIXbRUba=bIXbRUbaa
63 fveq2 b=aXb=Xa
64 fveq2 b=aUb=Ua
65 64 fveq1d b=aUba=Uaa
66 63 65 oveq12d b=aXbRUba=XaRUaa
67 eqid bIXbRUba=bIXbRUba
68 ovex XaRUaaV
69 66 67 68 fvmpt aIbIXbRUbaa=XaRUaa
70 69 adantl RRingIWXBaIbIXbRUbaa=XaRUaa
71 eqid 1R=1R
72 1 10 13 14 71 uvcvv1 RRingIWXBaIUaa=1R
73 72 oveq2d RRingIWXBaIXaRUaa=XaR1R
74 7 ffvelcdmda RRingIWXBaIXaBaseR
75 5 20 71 ringridm RRingXaBaseRXaR1R=Xa
76 10 74 75 syl2anc RRingIWXBaIXaR1R=Xa
77 73 76 eqtrd RRingIWXBaIXaRUaa=Xa
78 70 77 eqtrd RRingIWXBaIbIXbRUbaa=Xa
79 62 78 eqtrd RRingIWXBaIRbIXbRUba=Xa
80 79 mpteq2dva RRingIWXBaIRbIXbRUba=aIXa
81 8 80 eqtr4d RRingIWXBX=aIRbIXbRUba
82 eqid 0Y=0Y
83 simp2 RRingIWXBIW
84 simp1 RRingIWXBRRing
85 mptexg IWbIaIXbRUbaV
86 85 3ad2ant2 RRingIWXBbIaIXbRUbaV
87 funmpt FunbIaIXbRUba
88 87 a1i RRingIWXBFunbIaIXbRUba
89 fvexd RRingIWXB0YV
90 2 9 3 frlmbasfsupp IWXBfinSupp0RX
91 90 3adant1 RRingIWXBfinSupp0RX
92 91 fsuppimpd RRingIWXBXsupp0RFin
93 35 eqcomd RRingIWXBScalarY=R
94 93 fveq2d RRingIWXB0ScalarY=0R
95 94 oveq2d RRingIWXBXsupp0ScalarY=Xsupp0R
96 ssid Xsupp0RXsupp0R
97 95 96 eqsstrdi RRingIWXBXsupp0ScalarYXsupp0R
98 fvexd RRingIWXB0ScalarYV
99 7 97 83 98 suppssr RRingIWXBbIsupp0RXXb=0ScalarY
100 99 oveq1d RRingIWXBbIsupp0RXXb·˙Ub=0ScalarY·˙Ub
101 eldifi bIsupp0RXbI
102 101 30 sylan2 RRingIWXBbIsupp0RXXb·˙Ub=aIXbRUba
103 32 adantr RRingIWXBbIsupp0RXYLMod
104 101 19 sylan2 RRingIWXBbIsupp0RXUbB
105 eqid 0ScalarY=0ScalarY
106 3 39 4 105 82 lmod0vs YLModUbB0ScalarY·˙Ub=0Y
107 103 104 106 syl2anc RRingIWXBbIsupp0RX0ScalarY·˙Ub=0Y
108 100 102 107 3eqtr3d RRingIWXBbIsupp0RXaIXbRUba=0Y
109 108 83 suppss2 RRingIWXBbIaIXbRUbasupp0YXsupp0R
110 suppssfifsupp bIaIXbRUbaVFunbIaIXbRUba0YVXsupp0RFinbIaIXbRUbasupp0YXsupp0RfinSupp0YbIaIXbRUba
111 86 88 89 92 109 110 syl32anc RRingIWXBfinSupp0YbIaIXbRUba
112 2 3 82 83 83 84 43 111 frlmgsum RRingIWXBYbIaIXbRUba=aIRbIXbRUba
113 81 112 eqtr4d RRingIWXBX=YbIaIXbRUba
114 7 feqmptd RRingIWXBX=bIXb
115 18 feqmptd RRingIWXBU=bIUb
116 83 16 19 114 115 offval2 RRingIWXBX·˙fU=bIXb·˙Ub
117 30 mpteq2dva RRingIWXBbIXb·˙Ub=bIaIXbRUba
118 116 117 eqtrd RRingIWXBX·˙fU=bIaIXbRUba
119 118 oveq2d RRingIWXBYX·˙fU=YbIaIXbRUba
120 113 119 eqtr4d RRingIWXBX=YX·˙fU