| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vieta1.1 |  | 
						
							| 2 |  | vieta1.2 |  | 
						
							| 3 |  | vieta1.3 |  | 
						
							| 4 |  | vieta1.4 |  | 
						
							| 5 |  | vieta1.5 |  | 
						
							| 6 |  | vieta1lem.6 |  | 
						
							| 7 |  | vieta1lem.7 |  | 
						
							| 8 |  | vieta1lem.8 |  | 
						
							| 9 |  | vieta1lem.9 |  | 
						
							| 10 |  | plyssc |  | 
						
							| 11 | 4 | adantr |  | 
						
							| 12 | 10 11 | sselid |  | 
						
							| 13 |  | cnvimass |  | 
						
							| 14 | 3 13 | eqsstri |  | 
						
							| 15 |  | plyf |  | 
						
							| 16 | 4 15 | syl |  | 
						
							| 17 | 14 16 | fssdm |  | 
						
							| 18 | 17 | sselda |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 | plyremlem |  | 
						
							| 21 | 18 20 | syl |  | 
						
							| 22 | 21 | simp1d |  | 
						
							| 23 | 21 | simp2d |  | 
						
							| 24 |  | ax-1ne0 |  | 
						
							| 25 | 24 | a1i |  | 
						
							| 26 | 23 25 | eqnetrd |  | 
						
							| 27 |  | fveq2 |  | 
						
							| 28 |  | dgr0 |  | 
						
							| 29 | 27 28 | eqtrdi |  | 
						
							| 30 | 29 | necon3i |  | 
						
							| 31 | 26 30 | syl |  | 
						
							| 32 |  | quotcl2 |  | 
						
							| 33 | 12 22 31 32 | syl3anc |  | 
						
							| 34 | 9 33 | eqeltrid |  | 
						
							| 35 |  | 1cnd |  | 
						
							| 36 | 6 | nncnd |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 |  | dgrcl |  | 
						
							| 39 | 34 38 | syl |  | 
						
							| 40 | 39 | nn0cnd |  | 
						
							| 41 |  | ax-1cn |  | 
						
							| 42 |  | addcom |  | 
						
							| 43 | 41 37 42 | sylancr |  | 
						
							| 44 | 7 2 | eqtrdi |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 3 | eleq2i |  | 
						
							| 47 | 16 | ffnd |  | 
						
							| 48 |  | fniniseg |  | 
						
							| 49 | 47 48 | syl |  | 
						
							| 50 | 46 49 | bitrid |  | 
						
							| 51 | 50 | simplbda |  | 
						
							| 52 | 19 | facth |  | 
						
							| 53 | 11 18 51 52 | syl3anc |  | 
						
							| 54 | 9 | oveq2i |  | 
						
							| 55 | 53 54 | eqtr4di |  | 
						
							| 56 | 55 | fveq2d |  | 
						
							| 57 | 6 | peano2nnd |  | 
						
							| 58 | 7 57 | eqeltrrd |  | 
						
							| 59 | 58 | nnne0d |  | 
						
							| 60 | 2 59 | eqnetrrid |  | 
						
							| 61 |  | fveq2 |  | 
						
							| 62 | 61 28 | eqtrdi |  | 
						
							| 63 | 62 | necon3i |  | 
						
							| 64 | 60 63 | syl |  | 
						
							| 65 | 64 | adantr |  | 
						
							| 66 | 55 65 | eqnetrrd |  | 
						
							| 67 |  | plymul0or |  | 
						
							| 68 | 22 34 67 | syl2anc |  | 
						
							| 69 | 68 | necon3abid |  | 
						
							| 70 | 66 69 | mpbid |  | 
						
							| 71 |  | neanior |  | 
						
							| 72 | 70 71 | sylibr |  | 
						
							| 73 | 72 | simprd |  | 
						
							| 74 |  | eqid |  | 
						
							| 75 |  | eqid |  | 
						
							| 76 | 74 75 | dgrmul |  | 
						
							| 77 | 22 31 34 73 76 | syl22anc |  | 
						
							| 78 | 45 56 77 | 3eqtrd |  | 
						
							| 79 | 23 | oveq1d |  | 
						
							| 80 | 43 78 79 | 3eqtrd |  | 
						
							| 81 | 35 37 40 80 | addcanad |  | 
						
							| 82 | 34 81 | jca |  |