Metamath Proof Explorer


Theorem voliunsge0lem

Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses voliunsge0lem.s S=seq1+G
voliunsge0lem.g G=nvolEn
voliunsge0lem.e φE:domvol
voliunsge0lem.d φDisjnEn
Assertion voliunsge0lem φvolnEn=sum^nvolEn

Proof

Step Hyp Ref Expression
1 voliunsge0lem.s S=seq1+G
2 voliunsge0lem.g G=nvolEn
3 voliunsge0lem.e φE:domvol
4 voliunsge0lem.d φDisjnEn
5 nfv nφ
6 nfcv _nvol
7 nfiu1 _nnEn
8 6 7 nffv _nvolnEn
9 8 nfeq1 nvolnEn=+∞
10 iccssxr 0+∞*
11 volf vol:domvol0+∞
12 11 a1i φvol:domvol0+∞
13 3 ffvelcdmda φnEndomvol
14 13 ralrimiva φnEndomvol
15 iunmbl nEndomvolnEndomvol
16 14 15 syl φnEndomvol
17 12 16 ffvelcdmd φvolnEn0+∞
18 10 17 sselid φvolnEn*
19 18 adantr φnvolnEn*
20 19 3adant3 φnvolEn=+∞volnEn*
21 id volEn=+∞volEn=+∞
22 21 eqcomd volEn=+∞+∞=volEn
23 22 3ad2ant3 φnvolEn=+∞+∞=volEn
24 16 adantr φnnEndomvol
25 ssiun2 nEnnEn
26 25 adantl φnEnnEn
27 volss EndomvolnEndomvolEnnEnvolEnvolnEn
28 13 24 26 27 syl3anc φnvolEnvolnEn
29 28 3adant3 φnvolEn=+∞volEnvolnEn
30 23 29 eqbrtrd φnvolEn=+∞+∞volnEn
31 20 30 xrgepnfd φnvolEn=+∞volnEn=+∞
32 31 3exp φnvolEn=+∞volnEn=+∞
33 5 9 32 rexlimd φnvolEn=+∞volnEn=+∞
34 33 imp φnvolEn=+∞volnEn=+∞
35 nfre1 nnvolEn=+∞
36 5 35 nfan nφnvolEn=+∞
37 nnex V
38 37 a1i φnvolEn=+∞V
39 11 a1i φnvol:domvol0+∞
40 39 13 ffvelcdmd φnvolEn0+∞
41 40 adantlr φnvolEn=+∞nvolEn0+∞
42 simpr φnvolEn=+∞nvolEn=+∞
43 36 38 41 42 sge0pnfmpt φnvolEn=+∞sum^nvolEn=+∞
44 34 43 eqtr4d φnvolEn=+∞volnEn=sum^nvolEn
45 ralnex n¬volEn=+∞¬nvolEn=+∞
46 45 biimpri ¬nvolEn=+∞n¬volEn=+∞
47 46 adantl φ¬nvolEn=+∞n¬volEn=+∞
48 40 adantr φn¬volEn=+∞volEn0+∞
49 21 necon3bi ¬volEn=+∞volEn+∞
50 49 adantl φn¬volEn=+∞volEn+∞
51 ge0xrre volEn0+∞volEn+∞volEn
52 48 50 51 syl2anc φn¬volEn=+∞volEn
53 52 ex φn¬volEn=+∞volEn
54 renepnf volEnvolEn+∞
55 54 neneqd volEn¬volEn=+∞
56 55 a1i φnvolEn¬volEn=+∞
57 53 56 impbid φn¬volEn=+∞volEn
58 57 ralbidva φn¬volEn=+∞nvolEn
59 58 adantr φ¬nvolEn=+∞n¬volEn=+∞nvolEn
60 47 59 mpbid φ¬nvolEn=+∞nvolEn
61 nfra1 nnvolEn
62 5 61 nfan nφnvolEn
63 13 adantlr φnvolEnnEndomvol
64 rspa nvolEnnvolEn
65 64 adantll φnvolEnnvolEn
66 63 65 jca φnvolEnnEndomvolvolEn
67 66 ex φnvolEnnEndomvolvolEn
68 62 67 ralrimi φnvolEnnEndomvolvolEn
69 4 adantr φnvolEnDisjnEn
70 1 2 voliun nEndomvolvolEnDisjnEnvolnEn=supranS*<
71 68 69 70 syl2anc φnvolEnvolnEn=supranS*<
72 1zzd φnvolEn1
73 nnuz =1
74 nfv nm
75 62 74 nfan nφnvolEnm
76 nfv nvolEm0+∞
77 75 76 nfim nφnvolEnmvolEm0+∞
78 eleq1w n=mnm
79 78 anbi2d n=mφnvolEnnφnvolEnm
80 2fveq3 n=mvolEn=volEm
81 80 eleq1d n=mvolEn0+∞volEm0+∞
82 79 81 imbi12d n=mφnvolEnnvolEn0+∞φnvolEnmvolEm0+∞
83 0xr 0*
84 83 a1i φnvolEnn0*
85 pnfxr +∞*
86 85 a1i φnvolEnn+∞*
87 65 rexrd φnvolEnnvolEn*
88 volge0 Endomvol0volEn
89 13 88 syl φn0volEn
90 89 adantlr φnvolEnn0volEn
91 65 ltpnfd φnvolEnnvolEn<+∞
92 84 86 87 90 91 elicod φnvolEnnvolEn0+∞
93 77 82 92 chvarfv φnvolEnmvolEm0+∞
94 80 cbvmptv nvolEn=mvolEm
95 93 94 fmptd φnvolEnnvolEn:0+∞
96 seqeq3 G=nvolEnseq1+G=seq1+nvolEn
97 2 96 ax-mp seq1+G=seq1+nvolEn
98 1 97 eqtri S=seq1+nvolEn
99 72 73 95 98 sge0seq φnvolEnsum^nvolEn=supranS*<
100 71 99 eqtr4d φnvolEnvolnEn=sum^nvolEn
101 60 100 syldan φ¬nvolEn=+∞volnEn=sum^nvolEn
102 44 101 pm2.61dan φvolnEn=sum^nvolEn