Metamath Proof Explorer


Theorem vonioo

Description: The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonioo.x φ X Fin
vonioo.a φ A : X
vonioo.b φ B : X
vonioo.i I = k X A k B k
vonioo.l L = x Fin a x , b x if x = 0 k x vol a k b k
Assertion vonioo φ voln X I = A L X B

Proof

Step Hyp Ref Expression
1 vonioo.x φ X Fin
2 vonioo.a φ A : X
3 vonioo.b φ B : X
4 vonioo.i I = k X A k B k
5 vonioo.l L = x Fin a x , b x if x = 0 k x vol a k b k
6 2 adantr φ X = A : X
7 feq2 X = A : X A :
8 7 adantl φ X = A : X A :
9 6 8 mpbid φ X = A :
10 3 adantr φ X = B : X
11 feq2 X = B : X B :
12 11 adantl φ X = B : X B :
13 10 12 mpbid φ X = B :
14 5 9 13 hoidmv0val φ X = A L B = 0
15 14 eqcomd φ X = 0 = A L B
16 fveq2 X = voln X = voln
17 4 a1i X = I = k X A k B k
18 ixpeq1 X = k X A k B k = k A k B k
19 17 18 eqtrd X = I = k A k B k
20 16 19 fveq12d X = voln X I = voln k A k B k
21 20 adantl φ X = voln X I = voln k A k B k
22 0fin Fin
23 22 a1i φ X = Fin
24 eqid dom voln = dom voln
25 ressxr *
26 25 a1i φ X = *
27 9 26 fssd φ X = A : *
28 13 26 fssd φ X = B : *
29 23 24 27 28 ioovonmbl φ X = k A k B k dom voln
30 29 von0val φ X = voln k A k B k = 0
31 21 30 eqtrd φ X = voln X I = 0
32 fveq2 X = L X = L
33 32 oveqd X = A L X B = A L B
34 33 adantl φ X = A L X B = A L B
35 15 31 34 3eqtr4d φ X = voln X I = A L X B
36 neqne ¬ X = X
37 36 adantl φ ¬ X = X
38 nfv k φ X
39 nfra1 k k X A k < B k
40 38 39 nfan k φ X k X A k < B k
41 2 ffvelrnda φ k X A k
42 3 ffvelrnda φ k X B k
43 volico A k B k vol A k B k = if A k < B k B k A k 0
44 41 42 43 syl2anc φ k X vol A k B k = if A k < B k B k A k 0
45 44 ad4ant14 φ X k X A k < B k k X vol A k B k = if A k < B k B k A k 0
46 rspa k X A k < B k k X A k < B k
47 46 iftrued k X A k < B k k X if A k < B k B k A k 0 = B k A k
48 47 adantll φ X k X A k < B k k X if A k < B k B k A k 0 = B k A k
49 45 48 eqtrd φ X k X A k < B k k X vol A k B k = B k A k
50 49 ex φ X k X A k < B k k X vol A k B k = B k A k
51 40 50 ralrimi φ X k X A k < B k k X vol A k B k = B k A k
52 51 prodeq2d φ X k X A k < B k k X vol A k B k = k X B k A k
53 52 eqcomd φ X k X A k < B k k X B k A k = k X vol A k B k
54 fveq2 k = j A k = A j
55 fveq2 k = j B k = B j
56 54 55 breq12d k = j A k < B k A j < B j
57 56 cbvralvw k X A k < B k j X A j < B j
58 57 biimpi k X A k < B k j X A j < B j
59 58 adantl φ X k X A k < B k j X A j < B j
60 1 adantr φ X X Fin
61 60 adantr φ X j X A j < B j X Fin
62 2 adantr φ X A : X
63 62 adantr φ X j X A j < B j A : X
64 3 adantr φ X B : X
65 64 adantr φ X j X A j < B j B : X
66 simpr φ X X
67 66 adantr φ X j X A j < B j X
68 57 46 sylanbr j X A j < B j k X A k < B k
69 68 adantll φ X j X A j < B j k X A k < B k
70 fveq2 j = k A j = A k
71 70 oveq1d j = k A j + 1 m = A k + 1 m
72 71 cbvmptv j X A j + 1 m = k X A k + 1 m
73 72 a1i m = n j X A j + 1 m = k X A k + 1 m
74 oveq2 m = n 1 m = 1 n
75 74 oveq2d m = n A k + 1 m = A k + 1 n
76 75 mpteq2dv m = n k X A k + 1 m = k X A k + 1 n
77 73 76 eqtrd m = n j X A j + 1 m = k X A k + 1 n
78 77 cbvmptv m j X A j + 1 m = n k X A k + 1 n
79 nfcv _ n k X m j X A j + 1 m m k B k
80 nfcv _ m X
81 nffvmpt1 _ m m j X A j + 1 m n
82 nfcv _ m k
83 81 82 nffv _ m m j X A j + 1 m n k
84 nfcv _ m .
85 nfcv _ m B k
86 83 84 85 nfov _ m m j X A j + 1 m n k B k
87 80 86 nfixpw _ m k X m j X A j + 1 m n k B k
88 fveq2 m = n m j X A j + 1 m m = m j X A j + 1 m n
89 88 fveq1d m = n m j X A j + 1 m m k = m j X A j + 1 m n k
90 89 oveq1d m = n m j X A j + 1 m m k B k = m j X A j + 1 m n k B k
91 90 ixpeq2dv m = n k X m j X A j + 1 m m k B k = k X m j X A j + 1 m n k B k
92 79 87 91 cbvmpt m k X m j X A j + 1 m m k B k = n k X m j X A j + 1 m n k B k
93 61 63 65 67 69 4 78 92 vonioolem2 φ X j X A j < B j voln X I = k X B k A k
94 59 93 syldan φ X k X A k < B k voln X I = k X B k A k
95 5 60 66 62 64 hoidmvn0val φ X A L X B = k X vol A k B k
96 95 adantr φ X k X A k < B k A L X B = k X vol A k B k
97 53 94 96 3eqtr4d φ X k X A k < B k voln X I = A L X B
98 rexnal k X ¬ A k < B k ¬ k X A k < B k
99 98 bicomi ¬ k X A k < B k k X ¬ A k < B k
100 99 biimpi ¬ k X A k < B k k X ¬ A k < B k
101 100 adantl φ ¬ k X A k < B k k X ¬ A k < B k
102 simpr φ k X ¬ A k < B k ¬ A k < B k
103 42 adantr φ k X ¬ A k < B k B k
104 41 adantr φ k X ¬ A k < B k A k
105 103 104 lenltd φ k X ¬ A k < B k B k A k ¬ A k < B k
106 102 105 mpbird φ k X ¬ A k < B k B k A k
107 106 ex φ k X ¬ A k < B k B k A k
108 107 reximdva φ k X ¬ A k < B k k X B k A k
109 108 adantr φ ¬ k X A k < B k k X ¬ A k < B k k X B k A k
110 101 109 mpd φ ¬ k X A k < B k k X B k A k
111 110 adantlr φ X ¬ k X A k < B k k X B k A k
112 nfcv _ k voln X
113 nfixp1 _ k k X A k B k
114 4 113 nfcxfr _ k I
115 112 114 nffv _ k voln X I
116 nfcv _ k A L X B
117 115 116 nfeq k voln X I = A L X B
118 1 vonmea φ voln X Meas
119 118 mea0 φ voln X = 0
120 119 3ad2ant1 φ k X B k A k voln X = 0
121 4 a1i φ k X B k A k I = k X A k B k
122 simp2 φ k X B k A k k X
123 simp3 φ k X B k A k B k A k
124 25 41 sselid φ k X A k *
125 124 3adant3 φ k X B k A k A k *
126 25 42 sselid φ k X B k *
127 126 3adant3 φ k X B k A k B k *
128 ioo0 A k * B k * A k B k = B k A k
129 125 127 128 syl2anc φ k X B k A k A k B k = B k A k
130 123 129 mpbird φ k X B k A k A k B k =
131 rspe k X A k B k = k X A k B k =
132 122 130 131 syl2anc φ k X B k A k k X A k B k =
133 ixp0 k X A k B k = k X A k B k =
134 132 133 syl φ k X B k A k k X A k B k =
135 121 134 eqtrd φ k X B k A k I =
136 135 fveq2d φ k X B k A k voln X I = voln X
137 ne0i k X X
138 137 adantl φ k X X
139 138 95 syldan φ k X A L X B = k X vol A k B k
140 139 3adant3 φ k X B k A k A L X B = k X vol A k B k
141 eleq1w j = k j X k X
142 fveq2 j = k B j = B k
143 142 70 breq12d j = k B j A j B k A k
144 141 143 3anbi23d j = k φ j X B j A j φ k X B k A k
145 144 imbi1d j = k φ j X B j A j k X vol A k B k = 0 φ k X B k A k k X vol A k B k = 0
146 nfv k φ j X B j A j
147 1 3ad2ant1 φ j X B j A j X Fin
148 volicore A k B k vol A k B k
149 41 42 148 syl2anc φ k X vol A k B k
150 149 recnd φ k X vol A k B k
151 150 3ad2antl1 φ j X B j A j k X vol A k B k
152 simp2 φ j X B j A j j X
153 54 55 oveq12d k = j A k B k = A j B j
154 153 fveq2d k = j vol A k B k = vol A j B j
155 154 adantl φ j X B j A j k = j vol A k B k = vol A j B j
156 2 ffvelrnda φ j X A j
157 3 ffvelrnda φ j X B j
158 volico A j B j vol A j B j = if A j < B j B j A j 0
159 156 157 158 syl2anc φ j X vol A j B j = if A j < B j B j A j 0
160 159 3adant3 φ j X B j A j vol A j B j = if A j < B j B j A j 0
161 simp3 φ j X B j A j B j A j
162 157 156 lenltd φ j X B j A j ¬ A j < B j
163 162 3adant3 φ j X B j A j B j A j ¬ A j < B j
164 161 163 mpbid φ j X B j A j ¬ A j < B j
165 164 iffalsed φ j X B j A j if A j < B j B j A j 0 = 0
166 160 165 eqtrd φ j X B j A j vol A j B j = 0
167 166 adantr φ j X B j A j k = j vol A j B j = 0
168 155 167 eqtrd φ j X B j A j k = j vol A k B k = 0
169 146 147 151 152 168 fprodeq0g φ j X B j A j k X vol A k B k = 0
170 145 169 chvarvv φ k X B k A k k X vol A k B k = 0
171 140 170 eqtrd φ k X B k A k A L X B = 0
172 120 136 171 3eqtr4d φ k X B k A k voln X I = A L X B
173 172 3exp φ k X B k A k voln X I = A L X B
174 173 adantr φ X k X B k A k voln X I = A L X B
175 38 117 174 rexlimd φ X k X B k A k voln X I = A L X B
176 175 imp φ X k X B k A k voln X I = A L X B
177 111 176 syldan φ X ¬ k X A k < B k voln X I = A L X B
178 97 177 pm2.61dan φ X voln X I = A L X B
179 37 178 syldan φ ¬ X = voln X I = A L X B
180 35 179 pm2.61dan φ voln X I = A L X B