Metamath Proof Explorer


Theorem vonioo

Description: The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonioo.x φXFin
vonioo.a φA:X
vonioo.b φB:X
vonioo.i I=kXAkBk
vonioo.l L=xFinax,bxifx=0kxvolakbk
Assertion vonioo φvolnXI=ALXB

Proof

Step Hyp Ref Expression
1 vonioo.x φXFin
2 vonioo.a φA:X
3 vonioo.b φB:X
4 vonioo.i I=kXAkBk
5 vonioo.l L=xFinax,bxifx=0kxvolakbk
6 2 adantr φX=A:X
7 feq2 X=A:XA:
8 7 adantl φX=A:XA:
9 6 8 mpbid φX=A:
10 3 adantr φX=B:X
11 feq2 X=B:XB:
12 11 adantl φX=B:XB:
13 10 12 mpbid φX=B:
14 5 9 13 hoidmv0val φX=ALB=0
15 14 eqcomd φX=0=ALB
16 fveq2 X=volnX=voln
17 4 a1i X=I=kXAkBk
18 ixpeq1 X=kXAkBk=kAkBk
19 17 18 eqtrd X=I=kAkBk
20 16 19 fveq12d X=volnXI=volnkAkBk
21 20 adantl φX=volnXI=volnkAkBk
22 0fin Fin
23 22 a1i φX=Fin
24 eqid domvoln=domvoln
25 ressxr *
26 25 a1i φX=*
27 9 26 fssd φX=A:*
28 13 26 fssd φX=B:*
29 23 24 27 28 ioovonmbl φX=kAkBkdomvoln
30 29 von0val φX=volnkAkBk=0
31 21 30 eqtrd φX=volnXI=0
32 fveq2 X=LX=L
33 32 oveqd X=ALXB=ALB
34 33 adantl φX=ALXB=ALB
35 15 31 34 3eqtr4d φX=volnXI=ALXB
36 neqne ¬X=X
37 36 adantl φ¬X=X
38 nfv kφX
39 nfra1 kkXAk<Bk
40 38 39 nfan kφXkXAk<Bk
41 2 ffvelcdmda φkXAk
42 3 ffvelcdmda φkXBk
43 volico AkBkvolAkBk=ifAk<BkBkAk0
44 41 42 43 syl2anc φkXvolAkBk=ifAk<BkBkAk0
45 44 ad4ant14 φXkXAk<BkkXvolAkBk=ifAk<BkBkAk0
46 rspa kXAk<BkkXAk<Bk
47 46 iftrued kXAk<BkkXifAk<BkBkAk0=BkAk
48 47 adantll φXkXAk<BkkXifAk<BkBkAk0=BkAk
49 45 48 eqtrd φXkXAk<BkkXvolAkBk=BkAk
50 49 ex φXkXAk<BkkXvolAkBk=BkAk
51 40 50 ralrimi φXkXAk<BkkXvolAkBk=BkAk
52 51 prodeq2d φXkXAk<BkkXvolAkBk=kXBkAk
53 52 eqcomd φXkXAk<BkkXBkAk=kXvolAkBk
54 fveq2 k=jAk=Aj
55 fveq2 k=jBk=Bj
56 54 55 breq12d k=jAk<BkAj<Bj
57 56 cbvralvw kXAk<BkjXAj<Bj
58 57 biimpi kXAk<BkjXAj<Bj
59 58 adantl φXkXAk<BkjXAj<Bj
60 1 adantr φXXFin
61 60 adantr φXjXAj<BjXFin
62 2 adantr φXA:X
63 62 adantr φXjXAj<BjA:X
64 3 adantr φXB:X
65 64 adantr φXjXAj<BjB:X
66 simpr φXX
67 66 adantr φXjXAj<BjX
68 57 46 sylanbr jXAj<BjkXAk<Bk
69 68 adantll φXjXAj<BjkXAk<Bk
70 fveq2 j=kAj=Ak
71 70 oveq1d j=kAj+1m=Ak+1m
72 71 cbvmptv jXAj+1m=kXAk+1m
73 72 a1i m=njXAj+1m=kXAk+1m
74 oveq2 m=n1m=1n
75 74 oveq2d m=nAk+1m=Ak+1n
76 75 mpteq2dv m=nkXAk+1m=kXAk+1n
77 73 76 eqtrd m=njXAj+1m=kXAk+1n
78 77 cbvmptv mjXAj+1m=nkXAk+1n
79 nfcv _nkXmjXAj+1mmkBk
80 nfcv _mX
81 nffvmpt1 _mmjXAj+1mn
82 nfcv _mk
83 81 82 nffv _mmjXAj+1mnk
84 nfcv _m.
85 nfcv _mBk
86 83 84 85 nfov _mmjXAj+1mnkBk
87 80 86 nfixpw _mkXmjXAj+1mnkBk
88 fveq2 m=nmjXAj+1mm=mjXAj+1mn
89 88 fveq1d m=nmjXAj+1mmk=mjXAj+1mnk
90 89 oveq1d m=nmjXAj+1mmkBk=mjXAj+1mnkBk
91 90 ixpeq2dv m=nkXmjXAj+1mmkBk=kXmjXAj+1mnkBk
92 79 87 91 cbvmpt mkXmjXAj+1mmkBk=nkXmjXAj+1mnkBk
93 61 63 65 67 69 4 78 92 vonioolem2 φXjXAj<BjvolnXI=kXBkAk
94 59 93 syldan φXkXAk<BkvolnXI=kXBkAk
95 5 60 66 62 64 hoidmvn0val φXALXB=kXvolAkBk
96 95 adantr φXkXAk<BkALXB=kXvolAkBk
97 53 94 96 3eqtr4d φXkXAk<BkvolnXI=ALXB
98 rexnal kX¬Ak<Bk¬kXAk<Bk
99 98 bicomi ¬kXAk<BkkX¬Ak<Bk
100 99 biimpi ¬kXAk<BkkX¬Ak<Bk
101 100 adantl φ¬kXAk<BkkX¬Ak<Bk
102 simpr φkX¬Ak<Bk¬Ak<Bk
103 42 adantr φkX¬Ak<BkBk
104 41 adantr φkX¬Ak<BkAk
105 103 104 lenltd φkX¬Ak<BkBkAk¬Ak<Bk
106 102 105 mpbird φkX¬Ak<BkBkAk
107 106 ex φkX¬Ak<BkBkAk
108 107 reximdva φkX¬Ak<BkkXBkAk
109 108 adantr φ¬kXAk<BkkX¬Ak<BkkXBkAk
110 101 109 mpd φ¬kXAk<BkkXBkAk
111 110 adantlr φX¬kXAk<BkkXBkAk
112 nfcv _kvolnX
113 nfixp1 _kkXAkBk
114 4 113 nfcxfr _kI
115 112 114 nffv _kvolnXI
116 nfcv _kALXB
117 115 116 nfeq kvolnXI=ALXB
118 1 vonmea φvolnXMeas
119 118 mea0 φvolnX=0
120 119 3ad2ant1 φkXBkAkvolnX=0
121 4 a1i φkXBkAkI=kXAkBk
122 simp2 φkXBkAkkX
123 simp3 φkXBkAkBkAk
124 25 41 sselid φkXAk*
125 124 3adant3 φkXBkAkAk*
126 25 42 sselid φkXBk*
127 126 3adant3 φkXBkAkBk*
128 ioo0 Ak*Bk*AkBk=BkAk
129 125 127 128 syl2anc φkXBkAkAkBk=BkAk
130 123 129 mpbird φkXBkAkAkBk=
131 rspe kXAkBk=kXAkBk=
132 122 130 131 syl2anc φkXBkAkkXAkBk=
133 ixp0 kXAkBk=kXAkBk=
134 132 133 syl φkXBkAkkXAkBk=
135 121 134 eqtrd φkXBkAkI=
136 135 fveq2d φkXBkAkvolnXI=volnX
137 ne0i kXX
138 137 adantl φkXX
139 138 95 syldan φkXALXB=kXvolAkBk
140 139 3adant3 φkXBkAkALXB=kXvolAkBk
141 eleq1w j=kjXkX
142 fveq2 j=kBj=Bk
143 142 70 breq12d j=kBjAjBkAk
144 141 143 3anbi23d j=kφjXBjAjφkXBkAk
145 144 imbi1d j=kφjXBjAjkXvolAkBk=0φkXBkAkkXvolAkBk=0
146 nfv kφjXBjAj
147 1 3ad2ant1 φjXBjAjXFin
148 volicore AkBkvolAkBk
149 41 42 148 syl2anc φkXvolAkBk
150 149 recnd φkXvolAkBk
151 150 3ad2antl1 φjXBjAjkXvolAkBk
152 simp2 φjXBjAjjX
153 54 55 oveq12d k=jAkBk=AjBj
154 153 fveq2d k=jvolAkBk=volAjBj
155 154 adantl φjXBjAjk=jvolAkBk=volAjBj
156 2 ffvelcdmda φjXAj
157 3 ffvelcdmda φjXBj
158 volico AjBjvolAjBj=ifAj<BjBjAj0
159 156 157 158 syl2anc φjXvolAjBj=ifAj<BjBjAj0
160 159 3adant3 φjXBjAjvolAjBj=ifAj<BjBjAj0
161 simp3 φjXBjAjBjAj
162 157 156 lenltd φjXBjAj¬Aj<Bj
163 162 3adant3 φjXBjAjBjAj¬Aj<Bj
164 161 163 mpbid φjXBjAj¬Aj<Bj
165 164 iffalsed φjXBjAjifAj<BjBjAj0=0
166 160 165 eqtrd φjXBjAjvolAjBj=0
167 166 adantr φjXBjAjk=jvolAjBj=0
168 155 167 eqtrd φjXBjAjk=jvolAkBk=0
169 146 147 151 152 168 fprodeq0g φjXBjAjkXvolAkBk=0
170 145 169 chvarvv φkXBkAkkXvolAkBk=0
171 140 170 eqtrd φkXBkAkALXB=0
172 120 136 171 3eqtr4d φkXBkAkvolnXI=ALXB
173 172 3exp φkXBkAkvolnXI=ALXB
174 173 adantr φXkXBkAkvolnXI=ALXB
175 38 117 174 rexlimd φXkXBkAkvolnXI=ALXB
176 175 imp φXkXBkAkvolnXI=ALXB
177 111 176 syldan φX¬kXAk<BkvolnXI=ALXB
178 97 177 pm2.61dan φXvolnXI=ALXB
179 37 178 syldan φ¬X=volnXI=ALXB
180 35 179 pm2.61dan φvolnXI=ALXB