| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvivth.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 2 |
|
dvivth.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 3 |
|
dvivth.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 4 |
|
dvivth.4 |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 5 |
|
dvivth.5 |
⊢ ( 𝜑 → 𝑀 < 𝑁 ) |
| 6 |
|
dvivth.6 |
⊢ ( 𝜑 → 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
| 7 |
|
dvivth.7 |
⊢ 𝐺 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) |
| 8 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 9 |
8 1
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 10 |
8 2
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 11 |
9 10 5
|
ltled |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 12 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 14 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 15 |
|
dvfre |
⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 16 |
13 8 15
|
sylancl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 17 |
2 4
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ dom ( ℝ D 𝐹 ) ) |
| 18 |
16 17
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
| 19 |
1 4
|
eleqtrrd |
⊢ ( 𝜑 → 𝑀 ∈ dom ( ℝ D 𝐹 ) ) |
| 20 |
16 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) |
| 21 |
|
iccssre |
⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ⊆ ℝ ) |
| 22 |
18 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ⊆ ℝ ) |
| 23 |
22 6
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 25 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 26 |
25
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 27 |
24 26
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · 𝑦 ) ∈ ℝ ) |
| 28 |
14 27
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ∈ ℝ ) |
| 29 |
28 7
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 30 |
|
iccssioo2 |
⊢ ( ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 31 |
1 2 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 32 |
29 31
|
fssresd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 33 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 35 |
|
fss |
⊢ ( ( 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 36 |
29 33 35
|
sylancl |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 37 |
7
|
oveq2i |
⊢ ( ℝ D 𝐺 ) = ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) ) |
| 38 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 40 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 41 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 42 |
16 41
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 43 |
42
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ) |
| 44 |
13
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 45 |
44
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 46 |
42
|
feqmptd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 47 |
45 46
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 48 |
27
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · 𝑦 ) ∈ ℂ ) |
| 49 |
|
remulcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · 𝑦 ) ∈ ℝ ) |
| 50 |
23 49
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · 𝑦 ) ∈ ℝ ) |
| 51 |
50
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · 𝑦 ) ∈ ℂ ) |
| 52 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
| 53 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 54 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
| 55 |
39
|
dvmptid |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 56 |
23
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 57 |
39 53 54 55 56
|
dvmptcmul |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 1 ) ) ) |
| 58 |
56
|
mulridd |
⊢ ( 𝜑 → ( 𝐶 · 1 ) = 𝐶 ) |
| 59 |
58
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 1 ) ) = ( 𝑦 ∈ ℝ ↦ 𝐶 ) ) |
| 60 |
57 59
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ 𝐶 ) ) |
| 61 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 62 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 63 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
| 65 |
39 51 52 60 25 61 62 64
|
dvmptres |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐶 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ) |
| 66 |
39 40 43 47 48 24 65
|
dvmptsub |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ) |
| 67 |
37 66
|
eqtrid |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ) |
| 68 |
67
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = dom ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ) |
| 69 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ∈ V → dom ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 70 |
|
ovex |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ∈ V |
| 71 |
70
|
a1i |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ∈ V ) |
| 72 |
69 71
|
mprg |
⊢ dom ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) = ( 𝐴 (,) 𝐵 ) |
| 73 |
68 72
|
eqtrdi |
⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 74 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ∧ dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) → 𝐺 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 75 |
34 36 25 73 74
|
syl31anc |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 76 |
|
rescncf |
⊢ ( ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) → ( 𝐺 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) ) |
| 77 |
31 75 76
|
sylc |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) |
| 78 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) ) |
| 79 |
33 77 78
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) ) |
| 80 |
32 79
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 81 |
9 10 11 80
|
evthicc |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ∧ ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ) ) |
| 82 |
81
|
simpld |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ) |
| 83 |
|
fvres |
⊢ ( 𝑧 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 84 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 85 |
83 84
|
breqan12rd |
⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∧ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 86 |
85
|
ralbidva |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 88 |
|
ioossicc |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) |
| 89 |
|
ssralv |
⊢ ( ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 90 |
88 89
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 91 |
87 90
|
biimtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 92 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 93 |
42
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 94 |
92 93
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 95 |
94
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 96 |
95
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 97 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ∈ ℂ ) |
| 98 |
67
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) ) |
| 100 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 101 |
100
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 102 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) |
| 103 |
|
ovex |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ∈ V |
| 104 |
101 102 103
|
fvmpt |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 105 |
92 104
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 106 |
99 105
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 108 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 109 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 110 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) |
| 111 |
88 31
|
sstrid |
⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 112 |
111
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 113 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 114 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 115 |
113 114
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( ℝ D 𝐺 ) ) |
| 116 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 117 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑤 ) ) |
| 118 |
117
|
breq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 119 |
118
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 120 |
116 119
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 121 |
108 109 110 112 115 120
|
dvferm |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = 0 ) |
| 122 |
107 121
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) = 0 ) |
| 123 |
96 97 122
|
subeq0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
| 124 |
123
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 125 |
|
vex |
⊢ 𝑥 ∈ V |
| 126 |
125
|
elpr |
⊢ ( 𝑥 ∈ { 𝑀 , 𝑁 } ↔ ( 𝑥 = 𝑀 ∨ 𝑥 = 𝑁 ) ) |
| 127 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 128 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 129 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 130 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 = 𝑀 ) |
| 131 |
|
eliooord |
⊢ ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑀 ∧ 𝑀 < 𝐵 ) ) |
| 132 |
1 131
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 𝑀 ∧ 𝑀 < 𝐵 ) ) |
| 133 |
132
|
simpld |
⊢ ( 𝜑 → 𝐴 < 𝑀 ) |
| 134 |
|
ne0i |
⊢ ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 135 |
|
ndmioo |
⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
| 136 |
135
|
necon1ai |
⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 137 |
1 134 136
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 138 |
137
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 139 |
10
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
| 140 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 < 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
| 141 |
138 139 140
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 < 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
| 142 |
9 133 5 141
|
mpbir3and |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ) |
| 143 |
142
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ) |
| 144 |
130 143
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝑁 ) ) |
| 145 |
137
|
simprd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 146 |
|
eliooord |
⊢ ( 𝑁 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑁 ∧ 𝑁 < 𝐵 ) ) |
| 147 |
2 146
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 𝑁 ∧ 𝑁 < 𝐵 ) ) |
| 148 |
147
|
simprd |
⊢ ( 𝜑 → 𝑁 < 𝐵 ) |
| 149 |
139 145 148
|
xrltled |
⊢ ( 𝜑 → 𝑁 ≤ 𝐵 ) |
| 150 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑁 ≤ 𝐵 ) → ( 𝐴 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 151 |
145 149 150
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 152 |
151
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 153 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 154 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 155 |
153 154
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( ℝ D 𝐺 ) ) |
| 156 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 157 |
156 119
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 158 |
130
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑥 (,) 𝑁 ) = ( 𝑀 (,) 𝑁 ) ) |
| 159 |
157 158
|
raleqtrrdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑥 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 160 |
128 129 144 152 155 159
|
dvferm1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ≤ 0 ) |
| 161 |
127 160
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ≤ 0 ) |
| 162 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 163 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
| 164 |
162 163
|
suble0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ≤ 0 ↔ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ) ) |
| 165 |
161 164
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ) |
| 166 |
|
elicc2 |
⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) → ( 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) |
| 167 |
18 20 166
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) |
| 168 |
6 167
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
| 169 |
168
|
simp3d |
⊢ ( 𝜑 → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 170 |
169
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 171 |
130
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 172 |
170 171
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 173 |
162 163
|
letri3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 174 |
165 172 173
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
| 175 |
174
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 = 𝑀 → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 176 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 = 𝑁 ) |
| 177 |
176
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
| 178 |
168
|
simp2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ) |
| 179 |
178
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ) |
| 180 |
177 179
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ) |
| 181 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 182 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 183 |
9
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 184 |
|
elioo2 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝑀 < 𝑁 ∧ 𝑁 < 𝐵 ) ) ) |
| 185 |
183 145 184
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝑀 < 𝑁 ∧ 𝑁 < 𝐵 ) ) ) |
| 186 |
10 5 148 185
|
mpbir3and |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ) |
| 187 |
186
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ) |
| 188 |
176 187
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 (,) 𝐵 ) ) |
| 189 |
138 183 133
|
xrltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝑀 ) |
| 190 |
|
iooss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑀 ) → ( 𝑀 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 191 |
138 189 190
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 192 |
191
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑀 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 193 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 194 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 195 |
193 194
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( ℝ D 𝐺 ) ) |
| 196 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 197 |
196 119
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 198 |
176
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑀 (,) 𝑥 ) = ( 𝑀 (,) 𝑁 ) ) |
| 199 |
197 198
|
raleqtrrdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑥 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 200 |
181 182 188 192 195 199
|
dvferm2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 0 ≤ ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) |
| 201 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 202 |
200 201
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 0 ≤ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 203 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 204 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
| 205 |
203 204
|
subge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 0 ≤ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ↔ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 206 |
202 205
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 207 |
203 204
|
letri3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 208 |
180 206 207
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
| 209 |
208
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 = 𝑁 → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 210 |
175 209
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( 𝑥 = 𝑀 ∨ 𝑥 = 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 211 |
126 210
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 ∈ { 𝑀 , 𝑁 } → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 212 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∨ 𝑥 ∈ { 𝑀 , 𝑁 } ) ) |
| 213 |
|
prunioo |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) = ( 𝑀 [,] 𝑁 ) ) |
| 214 |
183 139 11 213
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) = ( 𝑀 [,] 𝑁 ) ) |
| 215 |
214
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) ↔ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
| 216 |
212 215
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∨ 𝑥 ∈ { 𝑀 , 𝑁 } ) ↔ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
| 217 |
216
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∨ 𝑥 ∈ { 𝑀 , 𝑁 } ) ) |
| 218 |
124 211 217
|
mpjaod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) |
| 219 |
91 218
|
syld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) |
| 220 |
219
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) |
| 221 |
82 220
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |