| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ufilfil |
⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) |
| 2 |
|
ufilmax |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) → 𝐹 = 𝑓 ) |
| 3 |
2
|
3expa |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑓 ) → 𝐹 = 𝑓 ) |
| 4 |
3
|
eqcomd |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑓 ) → 𝑓 = 𝐹 ) |
| 5 |
4
|
ex |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) |
| 6 |
1 5
|
sylan2 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) |
| 7 |
6
|
ralrimiva |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) |
| 8 |
|
ssid |
⊢ 𝐹 ⊆ 𝐹 |
| 9 |
|
sseq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝐹 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝐹 ) ) |
| 10 |
9
|
eqreu |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐹 ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) → ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
| 11 |
8 10
|
mp3an2 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) → ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
| 12 |
7 11
|
mpdan |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
| 13 |
|
reu6 |
⊢ ( ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ↔ ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) |
| 14 |
|
ibibr |
⊢ ( ( 𝑓 = 𝑔 → 𝐹 ⊆ 𝑓 ) ↔ ( 𝑓 = 𝑔 → ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ) |
| 15 |
14
|
pm5.74ri |
⊢ ( 𝑓 = 𝑔 → ( 𝐹 ⊆ 𝑓 ↔ ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ) |
| 16 |
|
sseq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝐹 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝑔 ) ) |
| 17 |
15 16
|
bitr3d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ↔ 𝐹 ⊆ 𝑔 ) ) |
| 18 |
17
|
rspcva |
⊢ ( ( 𝑔 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝐹 ⊆ 𝑔 ) |
| 19 |
18
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝐹 ⊆ 𝑔 ) |
| 20 |
|
ufilfil |
⊢ ( 𝑔 ∈ ( UFil ‘ 𝑋 ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) |
| 21 |
|
filelss |
⊢ ( ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑔 ) → 𝑥 ⊆ 𝑋 ) |
| 22 |
21
|
ex |
⊢ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋 ) ) |
| 23 |
20 22
|
syl |
⊢ ( 𝑔 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋 ) ) |
| 24 |
23
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋 ) ) |
| 25 |
|
filsspw |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 27 |
|
difss |
⊢ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 |
| 28 |
|
filtop |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝑋 ∈ 𝐹 ) |
| 30 |
29
|
difexd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ V ) |
| 31 |
|
elpwg |
⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) ) |
| 33 |
27 32
|
mpbiri |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ) |
| 34 |
33
|
snssd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → { ( 𝑋 ∖ 𝑥 ) } ⊆ 𝒫 𝑋 ) |
| 35 |
26 34
|
unssd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ) |
| 36 |
|
ssun1 |
⊢ 𝐹 ⊆ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) |
| 37 |
|
filn0 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ≠ ∅ ) |
| 39 |
|
ssn0 |
⊢ ( ( 𝐹 ⊆ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∧ 𝐹 ≠ ∅ ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ) |
| 40 |
36 38 39
|
sylancr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ) |
| 41 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → 𝑓 ⊆ 𝑋 ) |
| 42 |
41
|
ad2ant2rl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → 𝑓 ⊆ 𝑋 ) |
| 43 |
|
dfss2 |
⊢ ( 𝑓 ⊆ 𝑋 ↔ ( 𝑓 ∩ 𝑋 ) = 𝑓 ) |
| 44 |
42 43
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( 𝑓 ∩ 𝑋 ) = 𝑓 ) |
| 45 |
44
|
sseq1d |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑥 ) ) |
| 46 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑓 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑓 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐹 ) |
| 47 |
46
|
3exp2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑓 ∈ 𝐹 → ( 𝑥 ⊆ 𝑋 → ( 𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 48 |
47
|
impcomd |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) → ( 𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) → ( ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) → ( 𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 50 |
49
|
imp |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( 𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 51 |
45 50
|
sylbid |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 52 |
51
|
con3d |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( ¬ 𝑥 ∈ 𝐹 → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 53 |
52
|
expr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑓 ∈ 𝐹 → ( ¬ 𝑥 ∈ 𝐹 → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) ) |
| 54 |
53
|
com23 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ( 𝑓 ∈ 𝐹 → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) ) |
| 55 |
54
|
impr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑓 ∈ 𝐹 → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 56 |
55
|
imp |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) ∧ 𝑓 ∈ 𝐹 ) → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) |
| 57 |
|
ineq2 |
⊢ ( 𝑔 = ( 𝑋 ∖ 𝑥 ) → ( 𝑓 ∩ 𝑔 ) = ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) ) |
| 58 |
57
|
neeq1d |
⊢ ( 𝑔 = ( 𝑋 ∖ 𝑥 ) → ( ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) ) |
| 59 |
58
|
ralsng |
⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) ) |
| 60 |
|
inssdif0 |
⊢ ( ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ↔ ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) = ∅ ) |
| 61 |
60
|
necon3bbii |
⊢ ( ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ↔ ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) |
| 62 |
59 61
|
bitr4di |
⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 63 |
30 62
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 65 |
56 64
|
mpbird |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) ∧ 𝑓 ∈ 𝐹 ) → ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ) |
| 66 |
65
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ) |
| 67 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 68 |
67
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 69 |
|
difssd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) |
| 70 |
|
ssdif0 |
⊢ ( 𝑋 ⊆ 𝑥 ↔ ( 𝑋 ∖ 𝑥 ) = ∅ ) |
| 71 |
|
eqss |
⊢ ( 𝑥 = 𝑋 ↔ ( 𝑥 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑥 ) ) |
| 72 |
71
|
simplbi2 |
⊢ ( 𝑥 ⊆ 𝑋 → ( 𝑋 ⊆ 𝑥 → 𝑥 = 𝑋 ) ) |
| 73 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐹 ↔ 𝑋 ∈ 𝐹 ) ) |
| 74 |
73
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ 𝑥 ∈ 𝐹 ↔ ¬ 𝑋 ∈ 𝐹 ) ) |
| 75 |
74
|
biimpcd |
⊢ ( ¬ 𝑥 ∈ 𝐹 → ( 𝑥 = 𝑋 → ¬ 𝑋 ∈ 𝐹 ) ) |
| 76 |
72 75
|
sylan9 |
⊢ ( ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) → ( 𝑋 ⊆ 𝑥 → ¬ 𝑋 ∈ 𝐹 ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ⊆ 𝑥 → ¬ 𝑋 ∈ 𝐹 ) ) |
| 78 |
70 77
|
biimtrrid |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝑋 ∖ 𝑥 ) = ∅ → ¬ 𝑋 ∈ 𝐹 ) ) |
| 79 |
78
|
necon2ad |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∈ 𝐹 → ( 𝑋 ∖ 𝑥 ) ≠ ∅ ) ) |
| 80 |
29 79
|
mpd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ≠ ∅ ) |
| 81 |
|
snfbas |
⊢ ( ( ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑥 ) ≠ ∅ ∧ 𝑋 ∈ 𝐹 ) → { ( 𝑋 ∖ 𝑥 ) } ∈ ( fBas ‘ 𝑋 ) ) |
| 82 |
69 80 29 81
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → { ( 𝑋 ∖ 𝑥 ) } ∈ ( fBas ‘ 𝑋 ) ) |
| 83 |
|
fbunfip |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ { ( 𝑋 ∖ 𝑥 ) } ∈ ( fBas ‘ 𝑋 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ↔ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ) ) |
| 84 |
68 82 83
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ↔ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ) ) |
| 85 |
66 84
|
mpbird |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 86 |
|
fsubbas |
⊢ ( 𝑋 ∈ 𝐹 → ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) ) |
| 87 |
29 86
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) ) |
| 88 |
35 40 85 87
|
mpbir3and |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 89 |
|
fgcl |
⊢ ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 90 |
88 89
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 91 |
|
filssufil |
⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) |
| 92 |
90 91
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) |
| 93 |
|
r19.29 |
⊢ ( ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) ) |
| 94 |
|
biimp |
⊢ ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) → ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝑔 ) ) |
| 95 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 96 |
|
snex |
⊢ { ( 𝑋 ∖ 𝑥 ) } ∈ V |
| 97 |
|
unexg |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ { ( 𝑋 ∖ 𝑥 ) } ∈ V ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∈ V ) |
| 98 |
95 96 97
|
sylancl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∈ V ) |
| 99 |
|
ssfii |
⊢ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∈ V → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 100 |
98 99
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 101 |
|
ssfg |
⊢ ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 102 |
88 101
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 103 |
100 102
|
sstrd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 104 |
103
|
unssad |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 105 |
|
sstr2 |
⊢ ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → 𝐹 ⊆ 𝑓 ) ) |
| 106 |
104 105
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → 𝐹 ⊆ 𝑓 ) ) |
| 107 |
106
|
imim1d |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝑔 ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → 𝑓 = 𝑔 ) ) ) |
| 108 |
|
sseq2 |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ↔ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 109 |
108
|
biimpcd |
⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → ( 𝑓 = 𝑔 → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 110 |
109
|
a2i |
⊢ ( ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → 𝑓 = 𝑔 ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 111 |
94 107 110
|
syl56 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) ) |
| 112 |
111
|
impd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 113 |
112
|
rexlimdvw |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 114 |
93 113
|
syl5 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 115 |
92 114
|
mpan2d |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 116 |
115
|
imp |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) |
| 117 |
116
|
an32s |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) |
| 118 |
|
snidg |
⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } ) |
| 119 |
30 118
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } ) |
| 120 |
|
elun2 |
⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } → ( 𝑋 ∖ 𝑥 ) ∈ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) |
| 121 |
119 120
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) |
| 122 |
103 121
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 123 |
122
|
adantlr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 124 |
117 123
|
sseldd |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝑔 ) |
| 125 |
|
simpllr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝑔 ∈ ( UFil ‘ 𝑋 ) ) |
| 126 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝑥 ⊆ 𝑋 ) |
| 127 |
|
ufilb |
⊢ ( ( 𝑔 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝑔 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝑔 ) ) |
| 128 |
125 126 127
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ¬ 𝑥 ∈ 𝑔 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝑔 ) ) |
| 129 |
124 128
|
mpbird |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ¬ 𝑥 ∈ 𝑔 ) |
| 130 |
129
|
expr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝑔 ) ) |
| 131 |
130
|
con4d |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹 ) ) |
| 132 |
131
|
ex |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑥 ⊆ 𝑋 → ( 𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹 ) ) ) |
| 133 |
132
|
com23 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ 𝑔 → ( 𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐹 ) ) ) |
| 134 |
24 133
|
mpdd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹 ) ) |
| 135 |
134
|
ssrdv |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝑔 ⊆ 𝐹 ) |
| 136 |
19 135
|
eqssd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝐹 = 𝑔 ) |
| 137 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝑔 ∈ ( UFil ‘ 𝑋 ) ) |
| 138 |
136 137
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) |
| 139 |
138
|
rexlimdva2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) ) |
| 140 |
13 139
|
biimtrid |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) ) |
| 141 |
12 140
|
impbid2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) ) |