Metamath Proof Explorer


Theorem atans2

Description: It suffices to show that 1 -i A and 1 + i A are in the continuity domain of log to show that A is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses atansopn.d D = −∞ 0
atansopn.s S = y | 1 + y 2 D
Assertion atans2 A S A 1 i A D 1 + i A D

Proof

Step Hyp Ref Expression
1 atansopn.d D = −∞ 0
2 atansopn.s S = y | 1 + y 2 D
3 sqcl A A 2
4 3 adantr A 1 + A 2 −∞ 0 A 2
5 4 sqsqrtd A 1 + A 2 −∞ 0 A 2 2 = A 2
6 5 eqcomd A 1 + A 2 −∞ 0 A 2 = A 2 2
7 4 sqrtcld A 1 + A 2 −∞ 0 A 2
8 sqeqor A A 2 A 2 = A 2 2 A = A 2 A = A 2
9 7 8 syldan A 1 + A 2 −∞ 0 A 2 = A 2 2 A = A 2 A = A 2
10 6 9 mpbid A 1 + A 2 −∞ 0 A = A 2 A = A 2
11 1re 1
12 11 a1i A 1 + A 2 −∞ 0 1
13 4 negnegd A 1 + A 2 −∞ 0 A 2 = A 2
14 13 fveq2d A 1 + A 2 −∞ 0 A 2 = A 2
15 ax-1cn 1
16 pncan2 1 A 2 1 + A 2 - 1 = A 2
17 15 4 16 sylancr A 1 + A 2 −∞ 0 1 + A 2 - 1 = A 2
18 simpr A 1 + A 2 −∞ 0 1 + A 2 −∞ 0
19 mnfxr −∞ *
20 0re 0
21 elioc2 −∞ * 0 1 + A 2 −∞ 0 1 + A 2 −∞ < 1 + A 2 1 + A 2 0
22 19 20 21 mp2an 1 + A 2 −∞ 0 1 + A 2 −∞ < 1 + A 2 1 + A 2 0
23 18 22 sylib A 1 + A 2 −∞ 0 1 + A 2 −∞ < 1 + A 2 1 + A 2 0
24 23 simp1d A 1 + A 2 −∞ 0 1 + A 2
25 resubcl 1 + A 2 1 1 + A 2 - 1
26 24 11 25 sylancl A 1 + A 2 −∞ 0 1 + A 2 - 1
27 17 26 eqeltrrd A 1 + A 2 −∞ 0 A 2
28 27 renegcld A 1 + A 2 −∞ 0 A 2
29 0red A 1 + A 2 −∞ 0 0
30 0le1 0 1
31 30 a1i A 1 + A 2 −∞ 0 0 1
32 subneg 1 A 2 1 A 2 = 1 + A 2
33 15 4 32 sylancr A 1 + A 2 −∞ 0 1 A 2 = 1 + A 2
34 23 simp3d A 1 + A 2 −∞ 0 1 + A 2 0
35 33 34 eqbrtrd A 1 + A 2 −∞ 0 1 A 2 0
36 suble0 1 A 2 1 A 2 0 1 A 2
37 11 28 36 sylancr A 1 + A 2 −∞ 0 1 A 2 0 1 A 2
38 35 37 mpbid A 1 + A 2 −∞ 0 1 A 2
39 29 12 28 31 38 letrd A 1 + A 2 −∞ 0 0 A 2
40 28 39 sqrtnegd A 1 + A 2 −∞ 0 A 2 = i A 2
41 14 40 eqtr3d A 1 + A 2 −∞ 0 A 2 = i A 2
42 41 oveq2d A 1 + A 2 −∞ 0 i A 2 = i i A 2
43 ax-icn i
44 43 a1i A 1 + A 2 −∞ 0 i
45 28 39 resqrtcld A 1 + A 2 −∞ 0 A 2
46 45 recnd A 1 + A 2 −∞ 0 A 2
47 44 44 46 mulassd A 1 + A 2 −∞ 0 i i A 2 = i i A 2
48 ixi i i = 1
49 48 oveq1i i i A 2 = -1 A 2
50 46 mulm1d A 1 + A 2 −∞ 0 -1 A 2 = A 2
51 49 50 syl5eq A 1 + A 2 −∞ 0 i i A 2 = A 2
52 42 47 51 3eqtr2d A 1 + A 2 −∞ 0 i A 2 = A 2
53 45 renegcld A 1 + A 2 −∞ 0 A 2
54 52 53 eqeltrd A 1 + A 2 −∞ 0 i A 2
55 12 54 readdcld A 1 + A 2 −∞ 0 1 + i A 2
56 55 mnfltd A 1 + A 2 −∞ 0 −∞ < 1 + i A 2
57 52 oveq2d A 1 + A 2 −∞ 0 1 + i A 2 = 1 + A 2
58 negsub 1 A 2 1 + A 2 = 1 A 2
59 15 46 58 sylancr A 1 + A 2 −∞ 0 1 + A 2 = 1 A 2
60 57 59 eqtrd A 1 + A 2 −∞ 0 1 + i A 2 = 1 A 2
61 sq1 1 2 = 1
62 61 a1i A 1 + A 2 −∞ 0 1 2 = 1
63 28 recnd A 1 + A 2 −∞ 0 A 2
64 63 sqsqrtd A 1 + A 2 −∞ 0 A 2 2 = A 2
65 38 62 64 3brtr4d A 1 + A 2 −∞ 0 1 2 A 2 2
66 28 39 sqrtge0d A 1 + A 2 −∞ 0 0 A 2
67 12 45 31 66 le2sqd A 1 + A 2 −∞ 0 1 A 2 1 2 A 2 2
68 65 67 mpbird A 1 + A 2 −∞ 0 1 A 2
69 12 45 suble0d A 1 + A 2 −∞ 0 1 A 2 0 1 A 2
70 68 69 mpbird A 1 + A 2 −∞ 0 1 A 2 0
71 60 70 eqbrtrd A 1 + A 2 −∞ 0 1 + i A 2 0
72 elioc2 −∞ * 0 1 + i A 2 −∞ 0 1 + i A 2 −∞ < 1 + i A 2 1 + i A 2 0
73 19 20 72 mp2an 1 + i A 2 −∞ 0 1 + i A 2 −∞ < 1 + i A 2 1 + i A 2 0
74 55 56 71 73 syl3anbrc A 1 + A 2 −∞ 0 1 + i A 2 −∞ 0
75 oveq2 A = A 2 i A = i A 2
76 75 oveq2d A = A 2 1 + i A = 1 + i A 2
77 76 eleq1d A = A 2 1 + i A −∞ 0 1 + i A 2 −∞ 0
78 74 77 syl5ibrcom A 1 + A 2 −∞ 0 A = A 2 1 + i A −∞ 0
79 mulneg2 i A 2 i A 2 = i A 2
80 43 7 79 sylancr A 1 + A 2 −∞ 0 i A 2 = i A 2
81 80 oveq2d A 1 + A 2 −∞ 0 1 i A 2 = 1 i A 2
82 mulcl i A 2 i A 2
83 43 7 82 sylancr A 1 + A 2 −∞ 0 i A 2
84 subneg 1 i A 2 1 i A 2 = 1 + i A 2
85 15 83 84 sylancr A 1 + A 2 −∞ 0 1 i A 2 = 1 + i A 2
86 81 85 eqtrd A 1 + A 2 −∞ 0 1 i A 2 = 1 + i A 2
87 86 74 eqeltrd A 1 + A 2 −∞ 0 1 i A 2 −∞ 0
88 oveq2 A = A 2 i A = i A 2
89 88 oveq2d A = A 2 1 i A = 1 i A 2
90 89 eleq1d A = A 2 1 i A −∞ 0 1 i A 2 −∞ 0
91 87 90 syl5ibrcom A 1 + A 2 −∞ 0 A = A 2 1 i A −∞ 0
92 78 91 orim12d A 1 + A 2 −∞ 0 A = A 2 A = A 2 1 + i A −∞ 0 1 i A −∞ 0
93 10 92 mpd A 1 + A 2 −∞ 0 1 + i A −∞ 0 1 i A −∞ 0
94 93 orcomd A 1 + A 2 −∞ 0 1 i A −∞ 0 1 + i A −∞ 0
95 61 a1i A 1 2 = 1
96 sqmul i A i A 2 = i 2 A 2
97 43 96 mpan A i A 2 = i 2 A 2
98 i2 i 2 = 1
99 98 oveq1i i 2 A 2 = -1 A 2
100 3 mulm1d A -1 A 2 = A 2
101 99 100 syl5eq A i 2 A 2 = A 2
102 97 101 eqtrd A i A 2 = A 2
103 95 102 oveq12d A 1 2 i A 2 = 1 A 2
104 mulcl i A i A
105 43 104 mpan A i A
106 subsq 1 i A 1 2 i A 2 = 1 + i A 1 i A
107 15 105 106 sylancr A 1 2 i A 2 = 1 + i A 1 i A
108 15 3 32 sylancr A 1 A 2 = 1 + A 2
109 103 107 108 3eqtr3d A 1 + i A 1 i A = 1 + A 2
110 109 adantr A 1 i A −∞ 0 1 + i A −∞ 0 1 + i A 1 i A = 1 + A 2
111 2cn 2
112 111 a1i A 2
113 15 a1i A 1
114 112 113 105 subsubd A 2 1 i A = 2 - 1 + i A
115 2m1e1 2 1 = 1
116 115 oveq1i 2 - 1 + i A = 1 + i A
117 114 116 eqtrdi A 2 1 i A = 1 + i A
118 117 adantr A 1 i A −∞ 0 2 1 i A = 1 + i A
119 2re 2
120 simpr A 1 i A −∞ 0 1 i A −∞ 0
121 elioc2 −∞ * 0 1 i A −∞ 0 1 i A −∞ < 1 i A 1 i A 0
122 19 20 121 mp2an 1 i A −∞ 0 1 i A −∞ < 1 i A 1 i A 0
123 120 122 sylib A 1 i A −∞ 0 1 i A −∞ < 1 i A 1 i A 0
124 123 simp1d A 1 i A −∞ 0 1 i A
125 resubcl 2 1 i A 2 1 i A
126 119 124 125 sylancr A 1 i A −∞ 0 2 1 i A
127 118 126 eqeltrrd A 1 i A −∞ 0 1 + i A
128 127 124 remulcld A 1 i A −∞ 0 1 + i A 1 i A
129 128 mnfltd A 1 i A −∞ 0 −∞ < 1 + i A 1 i A
130 123 simp3d A 1 i A −∞ 0 1 i A 0
131 0red A 1 i A −∞ 0 0
132 119 a1i A 1 i A −∞ 0 2
133 2pos 0 < 2
134 133 a1i A 1 i A −∞ 0 0 < 2
135 111 subid1i 2 0 = 2
136 124 131 132 130 lesub2dd A 1 i A −∞ 0 2 0 2 1 i A
137 135 136 eqbrtrrid A 1 i A −∞ 0 2 2 1 i A
138 137 118 breqtrd A 1 i A −∞ 0 2 1 + i A
139 131 132 127 134 138 ltletrd A 1 i A −∞ 0 0 < 1 + i A
140 lemul2 1 i A 0 1 + i A 0 < 1 + i A 1 i A 0 1 + i A 1 i A 1 + i A 0
141 124 131 127 139 140 syl112anc A 1 i A −∞ 0 1 i A 0 1 + i A 1 i A 1 + i A 0
142 130 141 mpbid A 1 i A −∞ 0 1 + i A 1 i A 1 + i A 0
143 addcl 1 i A 1 + i A
144 15 105 143 sylancr A 1 + i A
145 144 adantr A 1 i A −∞ 0 1 + i A
146 145 mul01d A 1 i A −∞ 0 1 + i A 0 = 0
147 142 146 breqtrd A 1 i A −∞ 0 1 + i A 1 i A 0
148 elioc2 −∞ * 0 1 + i A 1 i A −∞ 0 1 + i A 1 i A −∞ < 1 + i A 1 i A 1 + i A 1 i A 0
149 19 20 148 mp2an 1 + i A 1 i A −∞ 0 1 + i A 1 i A −∞ < 1 + i A 1 i A 1 + i A 1 i A 0
150 128 129 147 149 syl3anbrc A 1 i A −∞ 0 1 + i A 1 i A −∞ 0
151 simpr A 1 + i A −∞ 0 1 + i A −∞ 0
152 elioc2 −∞ * 0 1 + i A −∞ 0 1 + i A −∞ < 1 + i A 1 + i A 0
153 19 20 152 mp2an 1 + i A −∞ 0 1 + i A −∞ < 1 + i A 1 + i A 0
154 151 153 sylib A 1 + i A −∞ 0 1 + i A −∞ < 1 + i A 1 + i A 0
155 154 simp1d A 1 + i A −∞ 0 1 + i A
156 115 oveq1i 2 - 1 - i A = 1 i A
157 112 113 105 subsub4d A 2 - 1 - i A = 2 1 + i A
158 156 157 syl5reqr A 2 1 + i A = 1 i A
159 158 adantr A 1 + i A −∞ 0 2 1 + i A = 1 i A
160 resubcl 2 1 + i A 2 1 + i A
161 119 155 160 sylancr A 1 + i A −∞ 0 2 1 + i A
162 159 161 eqeltrrd A 1 + i A −∞ 0 1 i A
163 155 162 remulcld A 1 + i A −∞ 0 1 + i A 1 i A
164 163 mnfltd A 1 + i A −∞ 0 −∞ < 1 + i A 1 i A
165 154 simp3d A 1 + i A −∞ 0 1 + i A 0
166 0red A 1 + i A −∞ 0 0
167 119 a1i A 1 + i A −∞ 0 2
168 133 a1i A 1 + i A −∞ 0 0 < 2
169 155 166 167 165 lesub2dd A 1 + i A −∞ 0 2 0 2 1 + i A
170 135 169 eqbrtrrid A 1 + i A −∞ 0 2 2 1 + i A
171 170 159 breqtrd A 1 + i A −∞ 0 2 1 i A
172 166 167 162 168 171 ltletrd A 1 + i A −∞ 0 0 < 1 i A
173 lemul1 1 + i A 0 1 i A 0 < 1 i A 1 + i A 0 1 + i A 1 i A 0 1 i A
174 155 166 162 172 173 syl112anc A 1 + i A −∞ 0 1 + i A 0 1 + i A 1 i A 0 1 i A
175 165 174 mpbid A 1 + i A −∞ 0 1 + i A 1 i A 0 1 i A
176 162 recnd A 1 + i A −∞ 0 1 i A
177 176 mul02d A 1 + i A −∞ 0 0 1 i A = 0
178 175 177 breqtrd A 1 + i A −∞ 0 1 + i A 1 i A 0
179 163 164 178 149 syl3anbrc A 1 + i A −∞ 0 1 + i A 1 i A −∞ 0
180 150 179 jaodan A 1 i A −∞ 0 1 + i A −∞ 0 1 + i A 1 i A −∞ 0
181 110 180 eqeltrrd A 1 i A −∞ 0 1 + i A −∞ 0 1 + A 2 −∞ 0
182 94 181 impbida A 1 + A 2 −∞ 0 1 i A −∞ 0 1 + i A −∞ 0
183 182 notbid A ¬ 1 + A 2 −∞ 0 ¬ 1 i A −∞ 0 1 + i A −∞ 0
184 ioran ¬ 1 i A −∞ 0 1 + i A −∞ 0 ¬ 1 i A −∞ 0 ¬ 1 + i A −∞ 0
185 183 184 bitrdi A ¬ 1 + A 2 −∞ 0 ¬ 1 i A −∞ 0 ¬ 1 + i A −∞ 0
186 addcl 1 A 2 1 + A 2
187 15 3 186 sylancr A 1 + A 2
188 1 eleq2i 1 + A 2 D 1 + A 2 −∞ 0
189 eldif 1 + A 2 −∞ 0 1 + A 2 ¬ 1 + A 2 −∞ 0
190 188 189 bitri 1 + A 2 D 1 + A 2 ¬ 1 + A 2 −∞ 0
191 190 baib 1 + A 2 1 + A 2 D ¬ 1 + A 2 −∞ 0
192 187 191 syl A 1 + A 2 D ¬ 1 + A 2 −∞ 0
193 subcl 1 i A 1 i A
194 15 105 193 sylancr A 1 i A
195 1 eleq2i 1 i A D 1 i A −∞ 0
196 eldif 1 i A −∞ 0 1 i A ¬ 1 i A −∞ 0
197 195 196 bitri 1 i A D 1 i A ¬ 1 i A −∞ 0
198 197 baib 1 i A 1 i A D ¬ 1 i A −∞ 0
199 194 198 syl A 1 i A D ¬ 1 i A −∞ 0
200 1 eleq2i 1 + i A D 1 + i A −∞ 0
201 eldif 1 + i A −∞ 0 1 + i A ¬ 1 + i A −∞ 0
202 200 201 bitri 1 + i A D 1 + i A ¬ 1 + i A −∞ 0
203 202 baib 1 + i A 1 + i A D ¬ 1 + i A −∞ 0
204 144 203 syl A 1 + i A D ¬ 1 + i A −∞ 0
205 199 204 anbi12d A 1 i A D 1 + i A D ¬ 1 i A −∞ 0 ¬ 1 + i A −∞ 0
206 185 192 205 3bitr4d A 1 + A 2 D 1 i A D 1 + i A D
207 206 pm5.32i A 1 + A 2 D A 1 i A D 1 + i A D
208 1 2 atans A S A 1 + A 2 D
209 3anass A 1 i A D 1 + i A D A 1 i A D 1 + i A D
210 207 208 209 3bitr4i A S A 1 i A D 1 + i A D