Metamath Proof Explorer


Theorem atans2

Description: It suffices to show that 1 -i A and 1 + i A are in the continuity domain of log to show that A is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses atansopn.d D=−∞0
atansopn.s S=y|1+y2D
Assertion atans2 ASA1iAD1+iAD

Proof

Step Hyp Ref Expression
1 atansopn.d D=−∞0
2 atansopn.s S=y|1+y2D
3 sqcl AA2
4 3 adantr A1+A2−∞0A2
5 4 sqsqrtd A1+A2−∞0A22=A2
6 5 eqcomd A1+A2−∞0A2=A22
7 4 sqrtcld A1+A2−∞0A2
8 sqeqor AA2A2=A22A=A2A=A2
9 7 8 syldan A1+A2−∞0A2=A22A=A2A=A2
10 6 9 mpbid A1+A2−∞0A=A2A=A2
11 1re 1
12 11 a1i A1+A2−∞01
13 4 negnegd A1+A2−∞0A2=A2
14 13 fveq2d A1+A2−∞0A2=A2
15 ax-1cn 1
16 pncan2 1A21+A2-1=A2
17 15 4 16 sylancr A1+A2−∞01+A2-1=A2
18 simpr A1+A2−∞01+A2−∞0
19 mnfxr −∞*
20 0re 0
21 elioc2 −∞*01+A2−∞01+A2−∞<1+A21+A20
22 19 20 21 mp2an 1+A2−∞01+A2−∞<1+A21+A20
23 18 22 sylib A1+A2−∞01+A2−∞<1+A21+A20
24 23 simp1d A1+A2−∞01+A2
25 resubcl 1+A211+A2-1
26 24 11 25 sylancl A1+A2−∞01+A2-1
27 17 26 eqeltrrd A1+A2−∞0A2
28 27 renegcld A1+A2−∞0A2
29 0red A1+A2−∞00
30 0le1 01
31 30 a1i A1+A2−∞001
32 subneg 1A21A2=1+A2
33 15 4 32 sylancr A1+A2−∞01A2=1+A2
34 23 simp3d A1+A2−∞01+A20
35 33 34 eqbrtrd A1+A2−∞01A20
36 suble0 1A21A201A2
37 11 28 36 sylancr A1+A2−∞01A201A2
38 35 37 mpbid A1+A2−∞01A2
39 29 12 28 31 38 letrd A1+A2−∞00A2
40 28 39 sqrtnegd A1+A2−∞0A2=iA2
41 14 40 eqtr3d A1+A2−∞0A2=iA2
42 41 oveq2d A1+A2−∞0iA2=iiA2
43 ax-icn i
44 43 a1i A1+A2−∞0i
45 28 39 resqrtcld A1+A2−∞0A2
46 45 recnd A1+A2−∞0A2
47 44 44 46 mulassd A1+A2−∞0iiA2=iiA2
48 ixi ii=1
49 48 oveq1i iiA2=-1A2
50 46 mulm1d A1+A2−∞0-1A2=A2
51 49 50 eqtrid A1+A2−∞0iiA2=A2
52 42 47 51 3eqtr2d A1+A2−∞0iA2=A2
53 45 renegcld A1+A2−∞0A2
54 52 53 eqeltrd A1+A2−∞0iA2
55 12 54 readdcld A1+A2−∞01+iA2
56 55 mnfltd A1+A2−∞0−∞<1+iA2
57 52 oveq2d A1+A2−∞01+iA2=1+A2
58 negsub 1A21+A2=1A2
59 15 46 58 sylancr A1+A2−∞01+A2=1A2
60 57 59 eqtrd A1+A2−∞01+iA2=1A2
61 sq1 12=1
62 61 a1i A1+A2−∞012=1
63 28 recnd A1+A2−∞0A2
64 63 sqsqrtd A1+A2−∞0A22=A2
65 38 62 64 3brtr4d A1+A2−∞012A22
66 28 39 sqrtge0d A1+A2−∞00A2
67 12 45 31 66 le2sqd A1+A2−∞01A212A22
68 65 67 mpbird A1+A2−∞01A2
69 12 45 suble0d A1+A2−∞01A201A2
70 68 69 mpbird A1+A2−∞01A20
71 60 70 eqbrtrd A1+A2−∞01+iA20
72 elioc2 −∞*01+iA2−∞01+iA2−∞<1+iA21+iA20
73 19 20 72 mp2an 1+iA2−∞01+iA2−∞<1+iA21+iA20
74 55 56 71 73 syl3anbrc A1+A2−∞01+iA2−∞0
75 oveq2 A=A2iA=iA2
76 75 oveq2d A=A21+iA=1+iA2
77 76 eleq1d A=A21+iA−∞01+iA2−∞0
78 74 77 syl5ibrcom A1+A2−∞0A=A21+iA−∞0
79 mulneg2 iA2iA2=iA2
80 43 7 79 sylancr A1+A2−∞0iA2=iA2
81 80 oveq2d A1+A2−∞01iA2=1iA2
82 mulcl iA2iA2
83 43 7 82 sylancr A1+A2−∞0iA2
84 subneg 1iA21iA2=1+iA2
85 15 83 84 sylancr A1+A2−∞01iA2=1+iA2
86 81 85 eqtrd A1+A2−∞01iA2=1+iA2
87 86 74 eqeltrd A1+A2−∞01iA2−∞0
88 oveq2 A=A2iA=iA2
89 88 oveq2d A=A21iA=1iA2
90 89 eleq1d A=A21iA−∞01iA2−∞0
91 87 90 syl5ibrcom A1+A2−∞0A=A21iA−∞0
92 78 91 orim12d A1+A2−∞0A=A2A=A21+iA−∞01iA−∞0
93 10 92 mpd A1+A2−∞01+iA−∞01iA−∞0
94 93 orcomd A1+A2−∞01iA−∞01+iA−∞0
95 61 a1i A12=1
96 sqmul iAiA2=i2A2
97 43 96 mpan AiA2=i2A2
98 i2 i2=1
99 98 oveq1i i2A2=-1A2
100 3 mulm1d A-1A2=A2
101 99 100 eqtrid Ai2A2=A2
102 97 101 eqtrd AiA2=A2
103 95 102 oveq12d A12iA2=1A2
104 mulcl iAiA
105 43 104 mpan AiA
106 subsq 1iA12iA2=1+iA1iA
107 15 105 106 sylancr A12iA2=1+iA1iA
108 15 3 32 sylancr A1A2=1+A2
109 103 107 108 3eqtr3d A1+iA1iA=1+A2
110 109 adantr A1iA−∞01+iA−∞01+iA1iA=1+A2
111 2cn 2
112 111 a1i A2
113 15 a1i A1
114 112 113 105 subsubd A21iA=2-1+iA
115 2m1e1 21=1
116 115 oveq1i 2-1+iA=1+iA
117 114 116 eqtrdi A21iA=1+iA
118 117 adantr A1iA−∞021iA=1+iA
119 2re 2
120 simpr A1iA−∞01iA−∞0
121 elioc2 −∞*01iA−∞01iA−∞<1iA1iA0
122 19 20 121 mp2an 1iA−∞01iA−∞<1iA1iA0
123 120 122 sylib A1iA−∞01iA−∞<1iA1iA0
124 123 simp1d A1iA−∞01iA
125 resubcl 21iA21iA
126 119 124 125 sylancr A1iA−∞021iA
127 118 126 eqeltrrd A1iA−∞01+iA
128 127 124 remulcld A1iA−∞01+iA1iA
129 128 mnfltd A1iA−∞0−∞<1+iA1iA
130 123 simp3d A1iA−∞01iA0
131 0red A1iA−∞00
132 119 a1i A1iA−∞02
133 2pos 0<2
134 133 a1i A1iA−∞00<2
135 111 subid1i 20=2
136 124 131 132 130 lesub2dd A1iA−∞02021iA
137 135 136 eqbrtrrid A1iA−∞0221iA
138 137 118 breqtrd A1iA−∞021+iA
139 131 132 127 134 138 ltletrd A1iA−∞00<1+iA
140 lemul2 1iA01+iA0<1+iA1iA01+iA1iA1+iA0
141 124 131 127 139 140 syl112anc A1iA−∞01iA01+iA1iA1+iA0
142 130 141 mpbid A1iA−∞01+iA1iA1+iA0
143 addcl 1iA1+iA
144 15 105 143 sylancr A1+iA
145 144 adantr A1iA−∞01+iA
146 145 mul01d A1iA−∞01+iA0=0
147 142 146 breqtrd A1iA−∞01+iA1iA0
148 elioc2 −∞*01+iA1iA−∞01+iA1iA−∞<1+iA1iA1+iA1iA0
149 19 20 148 mp2an 1+iA1iA−∞01+iA1iA−∞<1+iA1iA1+iA1iA0
150 128 129 147 149 syl3anbrc A1iA−∞01+iA1iA−∞0
151 simpr A1+iA−∞01+iA−∞0
152 elioc2 −∞*01+iA−∞01+iA−∞<1+iA1+iA0
153 19 20 152 mp2an 1+iA−∞01+iA−∞<1+iA1+iA0
154 151 153 sylib A1+iA−∞01+iA−∞<1+iA1+iA0
155 154 simp1d A1+iA−∞01+iA
156 112 113 105 subsub4d A2-1-iA=21+iA
157 115 oveq1i 2-1-iA=1iA
158 156 157 eqtr3di A21+iA=1iA
159 158 adantr A1+iA−∞021+iA=1iA
160 resubcl 21+iA21+iA
161 119 155 160 sylancr A1+iA−∞021+iA
162 159 161 eqeltrrd A1+iA−∞01iA
163 155 162 remulcld A1+iA−∞01+iA1iA
164 163 mnfltd A1+iA−∞0−∞<1+iA1iA
165 154 simp3d A1+iA−∞01+iA0
166 0red A1+iA−∞00
167 119 a1i A1+iA−∞02
168 133 a1i A1+iA−∞00<2
169 155 166 167 165 lesub2dd A1+iA−∞02021+iA
170 135 169 eqbrtrrid A1+iA−∞0221+iA
171 170 159 breqtrd A1+iA−∞021iA
172 166 167 162 168 171 ltletrd A1+iA−∞00<1iA
173 lemul1 1+iA01iA0<1iA1+iA01+iA1iA01iA
174 155 166 162 172 173 syl112anc A1+iA−∞01+iA01+iA1iA01iA
175 165 174 mpbid A1+iA−∞01+iA1iA01iA
176 162 recnd A1+iA−∞01iA
177 176 mul02d A1+iA−∞001iA=0
178 175 177 breqtrd A1+iA−∞01+iA1iA0
179 163 164 178 149 syl3anbrc A1+iA−∞01+iA1iA−∞0
180 150 179 jaodan A1iA−∞01+iA−∞01+iA1iA−∞0
181 110 180 eqeltrrd A1iA−∞01+iA−∞01+A2−∞0
182 94 181 impbida A1+A2−∞01iA−∞01+iA−∞0
183 182 notbid A¬1+A2−∞0¬1iA−∞01+iA−∞0
184 ioran ¬1iA−∞01+iA−∞0¬1iA−∞0¬1+iA−∞0
185 183 184 bitrdi A¬1+A2−∞0¬1iA−∞0¬1+iA−∞0
186 addcl 1A21+A2
187 15 3 186 sylancr A1+A2
188 1 eleq2i 1+A2D1+A2−∞0
189 eldif 1+A2−∞01+A2¬1+A2−∞0
190 188 189 bitri 1+A2D1+A2¬1+A2−∞0
191 190 baib 1+A21+A2D¬1+A2−∞0
192 187 191 syl A1+A2D¬1+A2−∞0
193 subcl 1iA1iA
194 15 105 193 sylancr A1iA
195 1 eleq2i 1iAD1iA−∞0
196 eldif 1iA−∞01iA¬1iA−∞0
197 195 196 bitri 1iAD1iA¬1iA−∞0
198 197 baib 1iA1iAD¬1iA−∞0
199 194 198 syl A1iAD¬1iA−∞0
200 1 eleq2i 1+iAD1+iA−∞0
201 eldif 1+iA−∞01+iA¬1+iA−∞0
202 200 201 bitri 1+iAD1+iA¬1+iA−∞0
203 202 baib 1+iA1+iAD¬1+iA−∞0
204 144 203 syl A1+iAD¬1+iA−∞0
205 199 204 anbi12d A1iAD1+iAD¬1iA−∞0¬1+iA−∞0
206 185 192 205 3bitr4d A1+A2D1iAD1+iAD
207 206 pm5.32i A1+A2DA1iAD1+iAD
208 1 2 atans ASA1+A2D
209 3anass A1iAD1+iADA1iAD1+iAD
210 207 208 209 3bitr4i ASA1iAD1+iAD