Metamath Proof Explorer


Theorem axlowdimlem17

Description: Lemma for axlowdim . Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013) (Proof shortened by Mario Carneiro, 22-May-2014)

Ref Expression
Hypotheses axlowdimlem16.1 P=311N3×0
axlowdimlem16.2 Q=I+111NI+1×0
axlowdimlem17.3 A=1X2Y3N×0
axlowdimlem17.4 X
axlowdimlem17.5 Y
Assertion axlowdimlem17 N3I2N1PACgrQA

Proof

Step Hyp Ref Expression
1 axlowdimlem16.1 P=311N3×0
2 axlowdimlem16.2 Q=I+111NI+1×0
3 axlowdimlem17.3 A=1X2Y3N×0
4 axlowdimlem17.4 X
5 axlowdimlem17.5 Y
6 uzuzle23 N3N2
7 6 ad2antrr N3I2N1i12N2
8 fzss2 N2121N
9 7 8 syl N3I2N1i12121N
10 simpr N3I2N1i12i12
11 9 10 sseldd N3I2N1i12i1N
12 fznuz i12¬i2+1
13 12 adantl N3I2N1i12¬i2+1
14 3z 3
15 uzid 333
16 14 15 ax-mp 33
17 df-3 3=2+1
18 17 fveq2i 3=2+1
19 16 18 eleqtri 32+1
20 eleq1 i=3i2+132+1
21 19 20 mpbiri i=3i2+1
22 21 necon3bi ¬i2+1i3
23 13 22 syl N3I2N1i12i3
24 1 axlowdimlem9 i1Ni3Pi=0
25 11 23 24 syl2anc N3I2N1i12Pi=0
26 elfzuz I2N1I2
27 26 ad2antlr N3I2N1i12I2
28 eluzp1p1 I2I+12+1
29 27 28 syl N3I2N1i12I+12+1
30 uzss I+12+1I+12+1
31 29 30 syl N3I2N1i12I+12+1
32 31 13 ssneldd N3I2N1i12¬iI+1
33 eluzelz I+12+1I+1
34 29 33 syl N3I2N1i12I+1
35 uzid I+1I+1I+1
36 34 35 syl N3I2N1i12I+1I+1
37 eleq1 i=I+1iI+1I+1I+1
38 36 37 syl5ibrcom N3I2N1i12i=I+1iI+1
39 38 necon3bd N3I2N1i12¬iI+1iI+1
40 32 39 mpd N3I2N1i12iI+1
41 2 axlowdimlem12 i1NiI+1Qi=0
42 11 40 41 syl2anc N3I2N1i12Qi=0
43 25 42 eqtr4d N3I2N1i12Pi=Qi
44 43 oveq1d N3I2N1i12PiAi=QiAi
45 44 oveq1d N3I2N1i12PiAi2=QiAi2
46 45 sumeq2dv N3I2N1i=12PiAi2=i=12QiAi2
47 1 2 axlowdimlem16 N3I2N1i=3NPi2=i=3NQi2
48 3 fveq1i Ai=1X2Y3N×0i
49 axlowdimlem2 123N=
50 4 5 axlowdimlem4 1X2Y:12
51 ffn 1X2Y:121X2YFn12
52 50 51 ax-mp 1X2YFn12
53 axlowdimlem1 3N×0:3N
54 ffn 3N×0:3N3N×0Fn3N
55 53 54 ax-mp 3N×0Fn3N
56 fvun2 1X2YFn123N×0Fn3N123N=i3N1X2Y3N×0i=3N×0i
57 52 55 56 mp3an12 123N=i3N1X2Y3N×0i=3N×0i
58 49 57 mpan i3N1X2Y3N×0i=3N×0i
59 48 58 eqtrid i3NAi=3N×0i
60 c0ex 0V
61 60 fvconst2 i3N3N×0i=0
62 59 61 eqtrd i3NAi=0
63 62 adantl N3I2N1i3NAi=0
64 63 oveq2d N3I2N1i3NPiAi=Pi0
65 1 axlowdimlem7 N3P𝔼N
66 65 ad2antrr N3I2N1i3NP𝔼N
67 3nn 3
68 nnuz =1
69 67 68 eleqtri 31
70 fzss1 313N1N
71 69 70 ax-mp 3N1N
72 71 sseli i3Ni1N
73 72 adantl N3I2N1i3Ni1N
74 fveecn P𝔼Ni1NPi
75 66 73 74 syl2anc N3I2N1i3NPi
76 75 subid1d N3I2N1i3NPi0=Pi
77 64 76 eqtrd N3I2N1i3NPiAi=Pi
78 77 oveq1d N3I2N1i3NPiAi2=Pi2
79 78 sumeq2dv N3I2N1i=3NPiAi2=i=3NPi2
80 63 oveq2d N3I2N1i3NQiAi=Qi0
81 eluzge3nn N3N
82 2eluzge1 21
83 fzss1 212N11N1
84 82 83 ax-mp 2N11N1
85 84 sseli I2N1I1N1
86 2 axlowdimlem10 NI1N1Q𝔼N
87 81 85 86 syl2an N3I2N1Q𝔼N
88 fveecn Q𝔼Ni1NQi
89 87 72 88 syl2an N3I2N1i3NQi
90 89 subid1d N3I2N1i3NQi0=Qi
91 80 90 eqtrd N3I2N1i3NQiAi=Qi
92 91 oveq1d N3I2N1i3NQiAi2=Qi2
93 92 sumeq2dv N3I2N1i=3NQiAi2=i=3NQi2
94 47 79 93 3eqtr4d N3I2N1i=3NPiAi2=i=3NQiAi2
95 46 94 oveq12d N3I2N1i=12PiAi2+i=3NPiAi2=i=12QiAi2+i=3NQiAi2
96 49 a1i N3I2N1123N=
97 eluzelre N3N
98 eluzle N33N
99 2re 2
100 3re 3
101 2lt3 2<3
102 99 100 101 ltleii 23
103 letr 23N233N2N
104 99 100 103 mp3an12 N233N2N
105 102 104 mpani N3N2N
106 97 98 105 sylc N32N
107 1le2 12
108 106 107 jctil N3122N
109 108 adantr N3I2N1122N
110 eluzelz N3N
111 110 adantr N3I2N1N
112 2z 2
113 1z 1
114 elfz 21N21N122N
115 112 113 114 mp3an12 N21N122N
116 111 115 syl N3I2N121N122N
117 109 116 mpbird N3I2N121N
118 fzsplit 21N1N=122+1N
119 117 118 syl N3I2N11N=122+1N
120 17 oveq1i 3N=2+1N
121 120 uneq2i 123N=122+1N
122 119 121 eqtr4di N3I2N11N=123N
123 fzfid N3I2N11NFin
124 65 ad2antrr N3I2N1i1NP𝔼N
125 124 74 sylancom N3I2N1i1NPi
126 4 5 axlowdimlem5 N21X2Y3N×0𝔼N
127 3 126 eqeltrid N2A𝔼N
128 6 127 syl N3A𝔼N
129 128 ad2antrr N3I2N1i1NA𝔼N
130 fveecn A𝔼Ni1NAi
131 129 130 sylancom N3I2N1i1NAi
132 125 131 subcld N3I2N1i1NPiAi
133 132 sqcld N3I2N1i1NPiAi2
134 96 122 123 133 fsumsplit N3I2N1i=1NPiAi2=i=12PiAi2+i=3NPiAi2
135 87 88 sylan N3I2N1i1NQi
136 135 131 subcld N3I2N1i1NQiAi
137 136 sqcld N3I2N1i1NQiAi2
138 96 122 123 137 fsumsplit N3I2N1i=1NQiAi2=i=12QiAi2+i=3NQiAi2
139 95 134 138 3eqtr4d N3I2N1i=1NPiAi2=i=1NQiAi2
140 65 adantr N3I2N1P𝔼N
141 128 adantr N3I2N1A𝔼N
142 brcgr P𝔼NA𝔼NQ𝔼NA𝔼NPACgrQAi=1NPiAi2=i=1NQiAi2
143 140 141 87 141 142 syl22anc N3I2N1PACgrQAi=1NPiAi2=i=1NQiAi2
144 139 143 mpbird N3I2N1PACgrQA