Metamath Proof Explorer


Theorem axlowdimlem17

Description: Lemma for axlowdim . Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013) (Proof shortened by Mario Carneiro, 22-May-2014)

Ref Expression
Hypotheses axlowdimlem16.1 P = 3 1 1 N 3 × 0
axlowdimlem16.2 Q = I + 1 1 1 N I + 1 × 0
axlowdimlem17.3 A = 1 X 2 Y 3 N × 0
axlowdimlem17.4 X
axlowdimlem17.5 Y
Assertion axlowdimlem17 N 3 I 2 N 1 P A Cgr Q A

Proof

Step Hyp Ref Expression
1 axlowdimlem16.1 P = 3 1 1 N 3 × 0
2 axlowdimlem16.2 Q = I + 1 1 1 N I + 1 × 0
3 axlowdimlem17.3 A = 1 X 2 Y 3 N × 0
4 axlowdimlem17.4 X
5 axlowdimlem17.5 Y
6 uzuzle23 N 3 N 2
7 6 ad2antrr N 3 I 2 N 1 i 1 2 N 2
8 fzss2 N 2 1 2 1 N
9 7 8 syl N 3 I 2 N 1 i 1 2 1 2 1 N
10 simpr N 3 I 2 N 1 i 1 2 i 1 2
11 9 10 sseldd N 3 I 2 N 1 i 1 2 i 1 N
12 fznuz i 1 2 ¬ i 2 + 1
13 12 adantl N 3 I 2 N 1 i 1 2 ¬ i 2 + 1
14 3z 3
15 uzid 3 3 3
16 14 15 ax-mp 3 3
17 df-3 3 = 2 + 1
18 17 fveq2i 3 = 2 + 1
19 16 18 eleqtri 3 2 + 1
20 eleq1 i = 3 i 2 + 1 3 2 + 1
21 19 20 mpbiri i = 3 i 2 + 1
22 21 necon3bi ¬ i 2 + 1 i 3
23 13 22 syl N 3 I 2 N 1 i 1 2 i 3
24 1 axlowdimlem9 i 1 N i 3 P i = 0
25 11 23 24 syl2anc N 3 I 2 N 1 i 1 2 P i = 0
26 elfzuz I 2 N 1 I 2
27 26 ad2antlr N 3 I 2 N 1 i 1 2 I 2
28 eluzp1p1 I 2 I + 1 2 + 1
29 27 28 syl N 3 I 2 N 1 i 1 2 I + 1 2 + 1
30 uzss I + 1 2 + 1 I + 1 2 + 1
31 29 30 syl N 3 I 2 N 1 i 1 2 I + 1 2 + 1
32 31 13 ssneldd N 3 I 2 N 1 i 1 2 ¬ i I + 1
33 eluzelz I + 1 2 + 1 I + 1
34 29 33 syl N 3 I 2 N 1 i 1 2 I + 1
35 uzid I + 1 I + 1 I + 1
36 34 35 syl N 3 I 2 N 1 i 1 2 I + 1 I + 1
37 eleq1 i = I + 1 i I + 1 I + 1 I + 1
38 36 37 syl5ibrcom N 3 I 2 N 1 i 1 2 i = I + 1 i I + 1
39 38 necon3bd N 3 I 2 N 1 i 1 2 ¬ i I + 1 i I + 1
40 32 39 mpd N 3 I 2 N 1 i 1 2 i I + 1
41 2 axlowdimlem12 i 1 N i I + 1 Q i = 0
42 11 40 41 syl2anc N 3 I 2 N 1 i 1 2 Q i = 0
43 25 42 eqtr4d N 3 I 2 N 1 i 1 2 P i = Q i
44 43 oveq1d N 3 I 2 N 1 i 1 2 P i A i = Q i A i
45 44 oveq1d N 3 I 2 N 1 i 1 2 P i A i 2 = Q i A i 2
46 45 sumeq2dv N 3 I 2 N 1 i = 1 2 P i A i 2 = i = 1 2 Q i A i 2
47 1 2 axlowdimlem16 N 3 I 2 N 1 i = 3 N P i 2 = i = 3 N Q i 2
48 3 fveq1i A i = 1 X 2 Y 3 N × 0 i
49 axlowdimlem2 1 2 3 N =
50 4 5 axlowdimlem4 1 X 2 Y : 1 2
51 ffn 1 X 2 Y : 1 2 1 X 2 Y Fn 1 2
52 50 51 ax-mp 1 X 2 Y Fn 1 2
53 axlowdimlem1 3 N × 0 : 3 N
54 ffn 3 N × 0 : 3 N 3 N × 0 Fn 3 N
55 53 54 ax-mp 3 N × 0 Fn 3 N
56 fvun2 1 X 2 Y Fn 1 2 3 N × 0 Fn 3 N 1 2 3 N = i 3 N 1 X 2 Y 3 N × 0 i = 3 N × 0 i
57 52 55 56 mp3an12 1 2 3 N = i 3 N 1 X 2 Y 3 N × 0 i = 3 N × 0 i
58 49 57 mpan i 3 N 1 X 2 Y 3 N × 0 i = 3 N × 0 i
59 48 58 eqtrid i 3 N A i = 3 N × 0 i
60 c0ex 0 V
61 60 fvconst2 i 3 N 3 N × 0 i = 0
62 59 61 eqtrd i 3 N A i = 0
63 62 adantl N 3 I 2 N 1 i 3 N A i = 0
64 63 oveq2d N 3 I 2 N 1 i 3 N P i A i = P i 0
65 1 axlowdimlem7 N 3 P 𝔼 N
66 65 ad2antrr N 3 I 2 N 1 i 3 N P 𝔼 N
67 3nn 3
68 nnuz = 1
69 67 68 eleqtri 3 1
70 fzss1 3 1 3 N 1 N
71 69 70 ax-mp 3 N 1 N
72 71 sseli i 3 N i 1 N
73 72 adantl N 3 I 2 N 1 i 3 N i 1 N
74 fveecn P 𝔼 N i 1 N P i
75 66 73 74 syl2anc N 3 I 2 N 1 i 3 N P i
76 75 subid1d N 3 I 2 N 1 i 3 N P i 0 = P i
77 64 76 eqtrd N 3 I 2 N 1 i 3 N P i A i = P i
78 77 oveq1d N 3 I 2 N 1 i 3 N P i A i 2 = P i 2
79 78 sumeq2dv N 3 I 2 N 1 i = 3 N P i A i 2 = i = 3 N P i 2
80 63 oveq2d N 3 I 2 N 1 i 3 N Q i A i = Q i 0
81 eluzge3nn N 3 N
82 2eluzge1 2 1
83 fzss1 2 1 2 N 1 1 N 1
84 82 83 ax-mp 2 N 1 1 N 1
85 84 sseli I 2 N 1 I 1 N 1
86 2 axlowdimlem10 N I 1 N 1 Q 𝔼 N
87 81 85 86 syl2an N 3 I 2 N 1 Q 𝔼 N
88 fveecn Q 𝔼 N i 1 N Q i
89 87 72 88 syl2an N 3 I 2 N 1 i 3 N Q i
90 89 subid1d N 3 I 2 N 1 i 3 N Q i 0 = Q i
91 80 90 eqtrd N 3 I 2 N 1 i 3 N Q i A i = Q i
92 91 oveq1d N 3 I 2 N 1 i 3 N Q i A i 2 = Q i 2
93 92 sumeq2dv N 3 I 2 N 1 i = 3 N Q i A i 2 = i = 3 N Q i 2
94 47 79 93 3eqtr4d N 3 I 2 N 1 i = 3 N P i A i 2 = i = 3 N Q i A i 2
95 46 94 oveq12d N 3 I 2 N 1 i = 1 2 P i A i 2 + i = 3 N P i A i 2 = i = 1 2 Q i A i 2 + i = 3 N Q i A i 2
96 49 a1i N 3 I 2 N 1 1 2 3 N =
97 eluzelre N 3 N
98 eluzle N 3 3 N
99 2re 2
100 3re 3
101 2lt3 2 < 3
102 99 100 101 ltleii 2 3
103 letr 2 3 N 2 3 3 N 2 N
104 99 100 103 mp3an12 N 2 3 3 N 2 N
105 102 104 mpani N 3 N 2 N
106 97 98 105 sylc N 3 2 N
107 1le2 1 2
108 106 107 jctil N 3 1 2 2 N
109 108 adantr N 3 I 2 N 1 1 2 2 N
110 eluzelz N 3 N
111 110 adantr N 3 I 2 N 1 N
112 2z 2
113 1z 1
114 elfz 2 1 N 2 1 N 1 2 2 N
115 112 113 114 mp3an12 N 2 1 N 1 2 2 N
116 111 115 syl N 3 I 2 N 1 2 1 N 1 2 2 N
117 109 116 mpbird N 3 I 2 N 1 2 1 N
118 fzsplit 2 1 N 1 N = 1 2 2 + 1 N
119 117 118 syl N 3 I 2 N 1 1 N = 1 2 2 + 1 N
120 17 oveq1i 3 N = 2 + 1 N
121 120 uneq2i 1 2 3 N = 1 2 2 + 1 N
122 119 121 eqtr4di N 3 I 2 N 1 1 N = 1 2 3 N
123 fzfid N 3 I 2 N 1 1 N Fin
124 65 ad2antrr N 3 I 2 N 1 i 1 N P 𝔼 N
125 124 74 sylancom N 3 I 2 N 1 i 1 N P i
126 4 5 axlowdimlem5 N 2 1 X 2 Y 3 N × 0 𝔼 N
127 3 126 eqeltrid N 2 A 𝔼 N
128 6 127 syl N 3 A 𝔼 N
129 128 ad2antrr N 3 I 2 N 1 i 1 N A 𝔼 N
130 fveecn A 𝔼 N i 1 N A i
131 129 130 sylancom N 3 I 2 N 1 i 1 N A i
132 125 131 subcld N 3 I 2 N 1 i 1 N P i A i
133 132 sqcld N 3 I 2 N 1 i 1 N P i A i 2
134 96 122 123 133 fsumsplit N 3 I 2 N 1 i = 1 N P i A i 2 = i = 1 2 P i A i 2 + i = 3 N P i A i 2
135 87 88 sylan N 3 I 2 N 1 i 1 N Q i
136 135 131 subcld N 3 I 2 N 1 i 1 N Q i A i
137 136 sqcld N 3 I 2 N 1 i 1 N Q i A i 2
138 96 122 123 137 fsumsplit N 3 I 2 N 1 i = 1 N Q i A i 2 = i = 1 2 Q i A i 2 + i = 3 N Q i A i 2
139 95 134 138 3eqtr4d N 3 I 2 N 1 i = 1 N P i A i 2 = i = 1 N Q i A i 2
140 65 adantr N 3 I 2 N 1 P 𝔼 N
141 128 adantr N 3 I 2 N 1 A 𝔼 N
142 brcgr P 𝔼 N A 𝔼 N Q 𝔼 N A 𝔼 N P A Cgr Q A i = 1 N P i A i 2 = i = 1 N Q i A i 2
143 140 141 87 141 142 syl22anc N 3 I 2 N 1 P A Cgr Q A i = 1 N P i A i 2 = i = 1 N Q i A i 2
144 139 143 mpbird N 3 I 2 N 1 P A Cgr Q A