Metamath Proof Explorer


Theorem bgoldbtbndlem2

Description: Lemma 2 for bgoldbtbnd . (Contributed by AV, 1-Aug-2020)

Ref Expression
Hypotheses bgoldbtbnd.m φM11
bgoldbtbnd.n φN11
bgoldbtbnd.b φnEven4<nn<NnGoldbachEven
bgoldbtbnd.d φD3
bgoldbtbnd.f φFRePartD
bgoldbtbnd.i φi0..^DFi2Fi+1Fi<N44<Fi+1Fi
bgoldbtbnd.0 φF0=7
bgoldbtbnd.1 φF1=13
bgoldbtbnd.l φM<FD
bgoldbtbndlem2.s S=XFI1
Assertion bgoldbtbndlem2 φXOddI1..^DXFIFI+1XFI4SEvenS<N4<S

Proof

Step Hyp Ref Expression
1 bgoldbtbnd.m φM11
2 bgoldbtbnd.n φN11
3 bgoldbtbnd.b φnEven4<nn<NnGoldbachEven
4 bgoldbtbnd.d φD3
5 bgoldbtbnd.f φFRePartD
6 bgoldbtbnd.i φi0..^DFi2Fi+1Fi<N44<Fi+1Fi
7 bgoldbtbnd.0 φF0=7
8 bgoldbtbnd.1 φF1=13
9 bgoldbtbnd.l φM<FD
10 bgoldbtbndlem2.s S=XFI1
11 elfzoelz I1..^DI
12 elfzoel2 I1..^DD
13 elfzom1b IDI1..^DI10..^D1
14 fzossrbm1 D0..^D10..^D
15 14 adantl ID0..^D10..^D
16 15 sseld IDI10..^D1I10..^D
17 13 16 sylbid IDI1..^DI10..^D
18 17 com12 I1..^DIDI10..^D
19 11 12 18 mp2and I1..^DI10..^D
20 fveq2 i=I1Fi=FI1
21 20 eleq1d i=I1Fi2FI12
22 fvoveq1 i=I1Fi+1=FI-1+1
23 22 20 oveq12d i=I1Fi+1Fi=FI-1+1FI1
24 23 breq1d i=I1Fi+1Fi<N4FI-1+1FI1<N4
25 23 breq2d i=I14<Fi+1Fi4<FI-1+1FI1
26 21 24 25 3anbi123d i=I1Fi2Fi+1Fi<N44<Fi+1FiFI12FI-1+1FI1<N44<FI-1+1FI1
27 26 rspcv I10..^Di0..^DFi2Fi+1Fi<N44<Fi+1FiFI12FI-1+1FI1<N44<FI-1+1FI1
28 19 27 syl I1..^Di0..^DFi2Fi+1Fi<N44<Fi+1FiFI12FI-1+1FI1<N44<FI-1+1FI1
29 6 28 syl5com φI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1
30 29 a1d φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1
31 30 3imp φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1
32 simp2 φXOddI1..^DXOdd
33 oddprmALTV FI12FI1Odd
34 33 3ad2ant1 FI12FI-1+1FI1<N44<FI-1+1FI1FI1Odd
35 32 34 anim12i φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XOddFI1Odd
36 35 adantr φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4XOddFI1Odd
37 omoeALTV XOddFI1OddXFI1Even
38 36 37 syl φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4XFI1Even
39 10 38 eqeltrid φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4SEven
40 11 zcnd I1..^DI
41 40 3ad2ant3 φXOddI1..^DI
42 npcan1 II-1+1=I
43 41 42 syl φXOddI1..^DI-1+1=I
44 43 fveq2d φXOddI1..^DFI-1+1=FI
45 44 oveq1d φXOddI1..^DFI-1+1FI1=FIFI1
46 45 breq1d φXOddI1..^DFI-1+1FI1<N4FIFI1<N4
47 46 adantr φXOddI1..^DFI12FI-1+1FI1<N4FIFI1<N4
48 eldifi FI12FI1
49 prmz FI1FI1
50 zre FI1FI1
51 simp1 Fi2Fi+1Fi<N44<Fi+1FiFi2
52 51 ralimi i0..^DFi2Fi+1Fi<N44<Fi+1Fii0..^DFi2
53 fzo0ss1 1..^D0..^D
54 53 sseli I1..^DI0..^D
55 54 adantl φI1..^DI0..^D
56 fveq2 i=IFi=FI
57 56 eleq1d i=IFi2FI2
58 57 rspcv I0..^Di0..^DFi2FI2
59 55 58 syl φI1..^Di0..^DFi2FI2
60 59 ex φI1..^Di0..^DFi2FI2
61 60 com23 φi0..^DFi2I1..^DFI2
62 61 a1i XOddφi0..^DFi2I1..^DFI2
63 62 com13 i0..^DFi2φXOddI1..^DFI2
64 52 63 syl i0..^DFi2Fi+1Fi<N44<Fi+1FiφXOddI1..^DFI2
65 6 64 mpcom φXOddI1..^DFI2
66 65 3imp φXOddI1..^DFI2
67 eldifi FI2FI
68 prmz FIFI
69 zre FIFI
70 eluzelz N11N
71 zre NN
72 oddz XOddX
73 72 zred XOddX
74 simplr NXFIFI1X
75 simprl NXFIFI1FI
76 4re 4
77 76 a1i NXFIFI14
78 74 75 77 lesubaddd NXFIFI1XFI4X4+FI
79 simpllr NXFIFI1X4+FIFIFI1<N4X
80 simplrr NXFIFI1X4+FIFIFI1<N4FI1
81 79 80 resubcld NXFIFI1X4+FIFIFI1<N4XFI1
82 76 a1i NXFIFI1X4+FIFIFI1<N44
83 simplrl NXFIFI1X4+FIFIFI1<N4FI
84 82 83 readdcld NXFIFI1X4+FIFIFI1<N44+FI
85 84 80 resubcld NXFIFI1X4+FIFIFI1<N44+FI-FI1
86 simplll NXFIFI1X4+FIFIFI1<N4N
87 77 75 readdcld NXFIFI14+FI
88 simprr NXFIFI1FI1
89 74 87 88 lesub1d NXFIFI1X4+FIXFI14+FI-FI1
90 89 biimpa NXFIFI1X4+FIXFI14+FI-FI1
91 90 adantrr NXFIFI1X4+FIFIFI1<N4XFI14+FI-FI1
92 resubcl FIFI1FIFI1
93 92 adantl NXFIFI1FIFI1
94 simpll NXFIFI1N
95 ltaddsub2 4FIFI1N4+FI-FI1<NFIFI1<N4
96 95 bicomd 4FIFI1NFIFI1<N44+FI-FI1<N
97 77 93 94 96 syl3anc NXFIFI1FIFI1<N44+FI-FI1<N
98 97 biimpd NXFIFI1FIFI1<N44+FI-FI1<N
99 98 adantld NXFIFI1X4+FIFIFI1<N44+FI-FI1<N
100 99 imp NXFIFI1X4+FIFIFI1<N44+FI-FI1<N
101 4cn 4
102 101 a1i NXFIFI14
103 75 recnd NXFIFI1FI
104 recn FI1FI1
105 104 adantl FIFI1FI1
106 105 adantl NXFIFI1FI1
107 102 103 106 addsubassd NXFIFI14+FI-FI1=4+FI-FI1
108 107 breq1d NXFIFI14+FI-FI1<N4+FI-FI1<N
109 108 adantr NXFIFI1X4+FIFIFI1<N44+FI-FI1<N4+FI-FI1<N
110 100 109 mpbird NXFIFI1X4+FIFIFI1<N44+FI-FI1<N
111 81 85 86 91 110 lelttrd NXFIFI1X4+FIFIFI1<N4XFI1<N
112 111 exp32 NXFIFI1X4+FIFIFI1<N4XFI1<N
113 78 112 sylbid NXFIFI1XFI4FIFI1<N4XFI1<N
114 113 com23 NXFIFI1FIFI1<N4XFI4XFI1<N
115 114 exp32 NXFIFI1FIFI1<N4XFI4XFI1<N
116 73 115 sylan2 NXOddFIFI1FIFI1<N4XFI4XFI1<N
117 116 ex NXOddFIFI1FIFI1<N4XFI4XFI1<N
118 71 117 syl NXOddFIFI1FIFI1<N4XFI4XFI1<N
119 2 70 118 3syl φXOddFIFI1FIFI1<N4XFI4XFI1<N
120 119 imp φXOddFIFI1FIFI1<N4XFI4XFI1<N
121 120 3adant3 φXOddI1..^DFIFI1FIFI1<N4XFI4XFI1<N
122 69 121 syl5com FIφXOddI1..^DFI1FIFI1<N4XFI4XFI1<N
123 67 68 122 3syl FI2φXOddI1..^DFI1FIFI1<N4XFI4XFI1<N
124 66 123 mpcom φXOddI1..^DFI1FIFI1<N4XFI4XFI1<N
125 50 124 syl5com FI1φXOddI1..^DFIFI1<N4XFI4XFI1<N
126 48 49 125 3syl FI12φXOddI1..^DFIFI1<N4XFI4XFI1<N
127 126 impcom φXOddI1..^DFI12FIFI1<N4XFI4XFI1<N
128 47 127 sylbid φXOddI1..^DFI12FI-1+1FI1<N4XFI4XFI1<N
129 128 expcom FI12φXOddI1..^DFI-1+1FI1<N4XFI4XFI1<N
130 129 com23 FI12FI-1+1FI1<N4φXOddI1..^DXFI4XFI1<N
131 130 imp FI12FI-1+1FI1<N4φXOddI1..^DXFI4XFI1<N
132 131 3adant3 FI12FI-1+1FI1<N44<FI-1+1FI1φXOddI1..^DXFI4XFI1<N
133 132 impcom φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFI4XFI1<N
134 133 com12 XFI4φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFI1<N
135 134 adantl XFIFI+1XFI4φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFI1<N
136 135 impcom φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4XFI1<N
137 10 136 eqbrtrid φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4S<N
138 76 a1i φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI44
139 1eluzge0 10
140 fzoss1 101..^D0..^D
141 139 140 mp1i φ1..^D0..^D
142 141 sselda φI1..^DI0..^D
143 fvoveq1 i=IFi+1=FI+1
144 143 56 oveq12d i=IFi+1Fi=FI+1FI
145 144 breq1d i=IFi+1Fi<N4FI+1FI<N4
146 144 breq2d i=I4<Fi+1Fi4<FI+1FI
147 57 145 146 3anbi123d i=IFi2Fi+1Fi<N44<Fi+1FiFI2FI+1FI<N44<FI+1FI
148 147 rspcv I0..^Di0..^DFi2Fi+1Fi<N44<Fi+1FiFI2FI+1FI<N44<FI+1FI
149 142 148 syl φI1..^Di0..^DFi2Fi+1Fi<N44<Fi+1FiFI2FI+1FI<N44<FI+1FI
150 68 zred FIFI
151 67 150 syl FI2FI
152 151 3ad2ant1 FI2FI+1FI<N44<FI+1FIFI
153 149 152 syl6 φI1..^Di0..^DFi2Fi+1Fi<N44<Fi+1FiFI
154 153 ex φI1..^Di0..^DFi2Fi+1Fi<N44<Fi+1FiFI
155 6 154 mpid φI1..^DFI
156 155 imp φI1..^DFI
157 156 3adant2 φXOddI1..^DFI
158 157 ad2antrr φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4FI
159 49 zred FI1FI1
160 48 159 syl FI12FI1
161 160 3ad2ant1 FI12FI-1+1FI1<N44<FI-1+1FI1FI1
162 161 ad2antlr φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4FI1
163 158 162 resubcld φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4FIFI1
164 73 3ad2ant2 φXOddI1..^DX
165 resubcl XFI1XFI1
166 164 161 165 syl2an φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFI1
167 166 adantr φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4XFI1
168 40 42 syl I1..^DI-1+1=I
169 168 3ad2ant3 φXOddI1..^DI-1+1=I
170 169 fveq2d φXOddI1..^DFI-1+1=FI
171 170 oveq1d φXOddI1..^DFI-1+1FI1=FIFI1
172 171 breq2d φXOddI1..^D4<FI-1+1FI14<FIFI1
173 172 biimpcd 4<FI-1+1FI1φXOddI1..^D4<FIFI1
174 173 3ad2ant3 FI12FI-1+1FI1<N44<FI-1+1FI1φXOddI1..^D4<FIFI1
175 174 impcom φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI14<FIFI1
176 175 adantr φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI44<FIFI1
177 164 ad2antrr φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4X
178 eluzge3nn D3D
179 4 178 syl φD
180 179 adantr φI1..^DD
181 5 adantr φI1..^DFRePartD
182 139 140 mp1i D31..^D0..^D
183 fzossfz 0..^D0D
184 182 183 sstrdi D31..^D0D
185 4 184 syl φ1..^D0D
186 185 sselda φI1..^DI0D
187 180 181 186 iccpartxr φI1..^DFI*
188 fzofzp1 I0..^DI+10D
189 142 188 syl φI1..^DI+10D
190 180 181 189 iccpartxr φI1..^DFI+1*
191 187 190 jca φI1..^DFI*FI+1*
192 191 3adant2 φXOddI1..^DFI*FI+1*
193 elico1 FI*FI+1*XFIFI+1X*FIXX<FI+1
194 192 193 syl φXOddI1..^DXFIFI+1X*FIXX<FI+1
195 simp2 X*FIXX<FI+1FIX
196 194 195 syl6bi φXOddI1..^DXFIFI+1FIX
197 196 adantrd φXOddI1..^DXFIFI+1XFI4FIX
198 197 adantr φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4FIX
199 198 imp φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4FIX
200 158 177 162 199 lesub1dd φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4FIFI1XFI1
201 138 163 167 176 200 ltletrd φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI44<XFI1
202 201 10 breqtrrdi φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI44<S
203 39 137 202 3jca φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4SEvenS<N4<S
204 203 ex φXOddI1..^DFI12FI-1+1FI1<N44<FI-1+1FI1XFIFI+1XFI4SEvenS<N4<S
205 31 204 mpdan φXOddI1..^DXFIFI+1XFI4SEvenS<N4<S