Metamath Proof Explorer


Theorem btwnconn1lem12

Description: Lemma for btwnconn1 . Using a long string of invocations of linecgr , we show that D = d . (Contributed by Scott Fenton, 9-Oct-2013)

Ref Expression
Assertion btwnconn1lem12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P D = d

Proof

Step Hyp Ref Expression
1 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N
2 simp2l1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C 𝔼 N
3 simp2l3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N c 𝔼 N
4 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P 𝔼 N
5 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N Q 𝔼 N
6 simp1l3 A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c
7 6 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C c
8 simpr1l E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn c P
9 8 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn c P
10 btwncolinear5 N c 𝔼 N P 𝔼 N C 𝔼 N C Btwn c P C Colinear c P
11 1 3 4 2 10 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C Btwn c P C Colinear c P
12 11 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn c P C Colinear c P
13 9 12 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Colinear c P
14 simp2l2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N D 𝔼 N
15 simp2r1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d 𝔼 N
16 simpr1r E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C d
17 16 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C d
18 simp2rr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C d Cgr C D
19 18 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C d Cgr C D
20 1 2 4 2 15 2 14 17 19 cgrtrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C D
21 btwnconn1lem11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P D C Cgr Q C
22 1 14 2 5 2 21 cgrcomlrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C D Cgr C Q
23 1 2 4 2 14 2 5 20 22 cgrtrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C Q
24 simp12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A 𝔼 N
25 simp13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N B 𝔼 N
26 simp2r2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N b 𝔼 N
27 simp1rr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B Btwn A D
28 27 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P B Btwn A D
29 simp2ll A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B D Btwn A c
30 29 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P D Btwn A c
31 1 24 25 14 3 28 30 btwnexchand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P B Btwn A c
32 simp3ll A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B c Btwn A b
33 32 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c Btwn A b
34 1 24 25 3 26 31 33 btwnexch3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c Btwn B b
35 opeq1 B = b B b = b b
36 35 breq2d B = b c Btwn B b c Btwn b b
37 36 biimpac c Btwn B b B = b c Btwn b b
38 axbtwnid N c 𝔼 N b 𝔼 N c Btwn b b c = b
39 1 3 26 38 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N c Btwn b b c = b
40 37 39 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N c Btwn B b B = b c = b
41 40 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N c Btwn B b B = b c = b
42 41 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c Btwn B b B = b c = b
43 34 42 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P B = b c = b
44 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N A 𝔼 N B 𝔼 N
45 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N
46 simp2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N
47 44 45 46 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N
48 simpl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B
49 simprl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn C c E Btwn D d
50 48 49 jca A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d
51 btwnconn1lem7 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C d
52 47 50 51 syl2an N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C d
53 simp2rl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C Btwn A d
54 53 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn A d
55 simp3rl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B d Btwn A b
56 55 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d Btwn A b
57 1 24 2 15 26 54 56 btwnexch3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d Btwn C b
58 btwncolinear2 N C 𝔼 N b 𝔼 N d 𝔼 N d Btwn C b C Colinear d b
59 1 2 26 15 58 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d Btwn C b C Colinear d b
60 59 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d Btwn C b C Colinear d b
61 57 60 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Colinear d b
62 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R 𝔼 N
63 simpr2r E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C R Cgr C E
64 63 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C R Cgr C E
65 btwnconn1lem5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d E C Cgr E c
66 47 50 65 syl2an N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E C Cgr E c
67 opeq2 R = C C R = C C
68 67 breq1d R = C C R Cgr C E C C Cgr C E
69 68 anbi1d R = C C R Cgr C E E C Cgr E c C C Cgr C E E C Cgr E c
70 69 biimpac C R Cgr C E E C Cgr E c R = C C C Cgr C E E C Cgr E c
71 simp2r3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N E 𝔼 N
72 cgrid2 N C 𝔼 N C 𝔼 N E 𝔼 N C C Cgr C E C = E
73 1 2 2 71 72 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C C Cgr C E C = E
74 opeq1 C = E C C = E C
75 opeq1 C = E C c = E c
76 74 75 breq12d C = E C C Cgr C c E C Cgr E c
77 76 biimpar C = E E C Cgr E c C C Cgr C c
78 cgrid2 N C 𝔼 N C 𝔼 N c 𝔼 N C C Cgr C c C = c
79 1 2 2 3 78 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C C Cgr C c C = c
80 77 79 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C = E E C Cgr E c C = c
81 73 80 syland N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C C Cgr C E E C Cgr E c C = c
82 70 81 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C R Cgr C E E C Cgr E c R = C C = c
83 82 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C R Cgr C E E C Cgr E c R = C C = c
84 83 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C R Cgr C E E C Cgr E c R = C C = c
85 64 66 84 mp2and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R = C C = c
86 85 necon3d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C c R C
87 7 86 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R C
88 simpr2l E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn d R
89 88 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn d R
90 btwncolinear4 N d 𝔼 N R 𝔼 N C 𝔼 N C Btwn d R R Colinear C d
91 1 15 62 2 90 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C Btwn d R R Colinear C d
92 91 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn d R R Colinear C d
93 89 92 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Colinear C d
94 simpr3r E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr R P
95 94 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr R P
96 1 62 5 62 4 95 cgrcomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R P Cgr R Q
97 1 62 2 15 4 5 87 93 96 23 linecgrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d P Cgr d Q
98 1 2 15 26 4 5 52 61 23 97 linecgrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P b P Cgr b Q
99 opeq1 c = b c P = b P
100 opeq1 c = b c Q = b Q
101 99 100 breq12d c = b c P Cgr c Q b P Cgr b Q
102 101 biimprd c = b b P Cgr b Q c P Cgr c Q
103 43 98 102 syl6ci N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P B = b c P Cgr c Q
104 103 com12 B = b N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c P Cgr c Q
105 simprl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N B b A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P B b
106 34 adantrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N B b A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c Btwn B b
107 btwncolinear1 N B 𝔼 N b 𝔼 N c 𝔼 N c Btwn B b B Colinear b c
108 1 25 26 3 107 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N c Btwn B b B Colinear b c
109 108 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N B b A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c Btwn B b B Colinear b c
110 106 109 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N B b A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P B Colinear b c
111 simp1rl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B Btwn A C
112 111 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P B Btwn A C
113 1 24 25 2 15 112 54 btwnexch3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn B d
114 btwncolinear6 N B 𝔼 N d 𝔼 N C 𝔼 N C Btwn B d C Colinear d B
115 1 25 15 2 114 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C Btwn B d C Colinear d B
116 115 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn B d C Colinear d B
117 113 116 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Colinear d B
118 1 2 15 25 4 5 52 117 23 97 linecgrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P B P Cgr B Q
119 118 adantrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N B b A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P B P Cgr B Q
120 98 adantrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N B b A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P b P Cgr b Q
121 1 25 26 3 4 5 105 110 119 120 linecgrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N B b A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c P Cgr c Q
122 121 an12s B b N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c P Cgr c Q
123 122 ex B b N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c P Cgr c Q
124 104 123 pm2.61ine N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P c P Cgr c Q
125 1 2 3 4 4 5 7 13 23 124 linecgrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P P P Cgr P Q
126 cgrid2 N P 𝔼 N P 𝔼 N Q 𝔼 N P P Cgr P Q P = Q
127 1 4 4 5 126 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P Q P = Q
128 127 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P P P Cgr P Q P = Q
129 125 128 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P P = Q
130 btwnconn1lem10 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d D Cgr P Q
131 opeq1 P = Q P Q = Q Q
132 131 breq2d P = Q d D Cgr P Q d D Cgr Q Q
133 132 biimpa P = Q d D Cgr P Q d D Cgr Q Q
134 axcgrid N d 𝔼 N D 𝔼 N Q 𝔼 N d D Cgr Q Q d = D
135 1 15 14 5 134 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d D Cgr Q Q d = D
136 133 135 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P = Q d D Cgr P Q d = D
137 136 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P P = Q d D Cgr P Q d = D
138 129 130 137 mp2and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d = D
139 138 eqcomd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P D = d