Metamath Proof Explorer


Theorem cayhamlem1

Description: Lemma 1 for cayleyhamilton . (Contributed by AV, 11-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A = N Mat R
cayhamlem1.b B = Base A
cayhamlem1.p P = Poly 1 R
cayhamlem1.y Y = N Mat P
cayhamlem1.r × ˙ = Y
cayhamlem1.s - ˙ = - Y
cayhamlem1.0 0 ˙ = 0 Y
cayhamlem1.t T = N matToPolyMat R
cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cayhamlem1.e × ˙ = mulGrp Y
Assertion cayhamlem1 N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = 0 ˙

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A = N Mat R
2 cayhamlem1.b B = Base A
3 cayhamlem1.p P = Poly 1 R
4 cayhamlem1.y Y = N Mat P
5 cayhamlem1.r × ˙ = Y
6 cayhamlem1.s - ˙ = - Y
7 cayhamlem1.0 0 ˙ = 0 Y
8 cayhamlem1.t T = N matToPolyMat R
9 cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 cayhamlem1.e × ˙ = mulGrp Y
11 eqid + Y = + Y
12 1 2 3 4 5 6 7 8 9 10 11 chfacfpmmulgsum2 N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + Y s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0
13 elfzelz i 1 s i
14 13 zcnd i 1 s i
15 pncan1 i i + 1 - 1 = i
16 14 15 syl i 1 s i + 1 - 1 = i
17 16 eqcomd i 1 s i = i + 1 - 1
18 17 adantl N Fin R CRing M B i 1 s i = i + 1 - 1
19 18 fveq2d N Fin R CRing M B i 1 s b i = b i + 1 - 1
20 19 fveq2d N Fin R CRing M B i 1 s T b i = T b i + 1 - 1
21 20 oveq2d N Fin R CRing M B i 1 s i + 1 × ˙ T M × ˙ T b i = i + 1 × ˙ T M × ˙ T b i + 1 - 1
22 21 oveq2d N Fin R CRing M B i 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i = i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + 1 - 1
23 22 mpteq2dva N Fin R CRing M B i 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i = i 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + 1 - 1
24 23 oveq2d N Fin R CRing M B Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + 1 - 1
25 24 adantr N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + 1 - 1
26 eqid Base Y = Base Y
27 crngring R CRing R Ring
28 27 anim2i N Fin R CRing N Fin R Ring
29 28 3adant3 N Fin R CRing M B N Fin R Ring
30 3 4 pmatring N Fin R Ring Y Ring
31 29 30 syl N Fin R CRing M B Y Ring
32 ringabl Y Ring Y Abel
33 31 32 syl N Fin R CRing M B Y Abel
34 33 adantr N Fin R CRing M B s b B 0 s Y Abel
35 elnnuz s s 1
36 35 biimpi s s 1
37 36 ad2antrl N Fin R CRing M B s b B 0 s s 1
38 31 adantr N Fin R CRing M B s b B 0 s Y Ring
39 38 adantr N Fin R CRing M B s b B 0 s k 1 s + 1 Y Ring
40 28 30 syl N Fin R CRing Y Ring
41 40 3adant3 N Fin R CRing M B Y Ring
42 eqid mulGrp Y = mulGrp Y
43 42 ringmgp Y Ring mulGrp Y Mnd
44 41 43 syl N Fin R CRing M B mulGrp Y Mnd
45 44 adantr N Fin R CRing M B s b B 0 s mulGrp Y Mnd
46 45 adantr N Fin R CRing M B s b B 0 s k 1 s + 1 mulGrp Y Mnd
47 mndmgm mulGrp Y Mnd mulGrp Y Mgm
48 46 47 syl N Fin R CRing M B s b B 0 s k 1 s + 1 mulGrp Y Mgm
49 elfznn k 1 s + 1 k
50 49 adantl N Fin R CRing M B s b B 0 s k 1 s + 1 k
51 8 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
52 27 51 syl3an2 N Fin R CRing M B T M Base Y
53 52 adantr N Fin R CRing M B s b B 0 s T M Base Y
54 53 adantr N Fin R CRing M B s b B 0 s k 1 s + 1 T M Base Y
55 42 26 mgpbas Base Y = Base mulGrp Y
56 55 10 mulgnncl mulGrp Y Mgm k T M Base Y k × ˙ T M Base Y
57 48 50 54 56 syl3anc N Fin R CRing M B s b B 0 s k 1 s + 1 k × ˙ T M Base Y
58 simpl1 N Fin R CRing M B s b B 0 s N Fin
59 58 adantr N Fin R CRing M B s b B 0 s k 1 s + 1 N Fin
60 27 3ad2ant2 N Fin R CRing M B R Ring
61 60 adantr N Fin R CRing M B s b B 0 s R Ring
62 61 adantr N Fin R CRing M B s b B 0 s k 1 s + 1 R Ring
63 elmapi b B 0 s b : 0 s B
64 63 adantl s b B 0 s b : 0 s B
65 64 adantl N Fin R CRing M B s b B 0 s b : 0 s B
66 65 adantr N Fin R CRing M B s b B 0 s k 1 s + 1 b : 0 s B
67 nnz k k
68 peano2nn s s + 1
69 68 nnzd s s + 1
70 elfzm1b k s + 1 k 1 s + 1 k 1 0 s + 1 - 1
71 67 69 70 syl2an k s k 1 s + 1 k 1 0 s + 1 - 1
72 nncn s s
73 pncan1 s s + 1 - 1 = s
74 72 73 syl s s + 1 - 1 = s
75 74 adantl k s s + 1 - 1 = s
76 75 oveq2d k s 0 s + 1 - 1 = 0 s
77 76 eleq2d k s k 1 0 s + 1 - 1 k 1 0 s
78 77 biimpd k s k 1 0 s + 1 - 1 k 1 0 s
79 71 78 sylbid k s k 1 s + 1 k 1 0 s
80 79 expcom s k k 1 s + 1 k 1 0 s
81 80 com13 k 1 s + 1 k s k 1 0 s
82 49 81 mpd k 1 s + 1 s k 1 0 s
83 82 com12 s k 1 s + 1 k 1 0 s
84 83 ad2antrl N Fin R CRing M B s b B 0 s k 1 s + 1 k 1 0 s
85 84 imp N Fin R CRing M B s b B 0 s k 1 s + 1 k 1 0 s
86 66 85 ffvelrnd N Fin R CRing M B s b B 0 s k 1 s + 1 b k 1 B
87 8 1 2 3 4 mat2pmatbas N Fin R Ring b k 1 B T b k 1 Base Y
88 59 62 86 87 syl3anc N Fin R CRing M B s b B 0 s k 1 s + 1 T b k 1 Base Y
89 26 5 ringcl Y Ring k × ˙ T M Base Y T b k 1 Base Y k × ˙ T M × ˙ T b k 1 Base Y
90 39 57 88 89 syl3anc N Fin R CRing M B s b B 0 s k 1 s + 1 k × ˙ T M × ˙ T b k 1 Base Y
91 90 ralrimiva N Fin R CRing M B s b B 0 s k 1 s + 1 k × ˙ T M × ˙ T b k 1 Base Y
92 oveq1 k = i k × ˙ T M = i × ˙ T M
93 fvoveq1 k = i b k 1 = b i 1
94 93 fveq2d k = i T b k 1 = T b i 1
95 92 94 oveq12d k = i k × ˙ T M × ˙ T b k 1 = i × ˙ T M × ˙ T b i 1
96 oveq1 k = i + 1 k × ˙ T M = i + 1 × ˙ T M
97 fvoveq1 k = i + 1 b k 1 = b i + 1 - 1
98 97 fveq2d k = i + 1 T b k 1 = T b i + 1 - 1
99 96 98 oveq12d k = i + 1 k × ˙ T M × ˙ T b k 1 = i + 1 × ˙ T M × ˙ T b i + 1 - 1
100 oveq1 k = 1 k × ˙ T M = 1 × ˙ T M
101 fvoveq1 k = 1 b k 1 = b 1 1
102 101 fveq2d k = 1 T b k 1 = T b 1 1
103 100 102 oveq12d k = 1 k × ˙ T M × ˙ T b k 1 = 1 × ˙ T M × ˙ T b 1 1
104 oveq1 k = s + 1 k × ˙ T M = s + 1 × ˙ T M
105 fvoveq1 k = s + 1 b k 1 = b s + 1 - 1
106 105 fveq2d k = s + 1 T b k 1 = T b s + 1 - 1
107 104 106 oveq12d k = s + 1 k × ˙ T M × ˙ T b k 1 = s + 1 × ˙ T M × ˙ T b s + 1 - 1
108 26 34 6 37 91 95 99 103 107 telgsumfz N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + 1 - 1 = 1 × ˙ T M × ˙ T b 1 1 - ˙ s + 1 × ˙ T M × ˙ T b s + 1 - 1
109 25 108 eqtrd N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i = 1 × ˙ T M × ˙ T b 1 1 - ˙ s + 1 × ˙ T M × ˙ T b s + 1 - 1
110 109 oveq1d N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + Y s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0 = 1 × ˙ T M × ˙ T b 1 1 - ˙ s + 1 × ˙ T M × ˙ T b s + 1 - 1 + Y s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0
111 55 10 mulg1 T M Base Y 1 × ˙ T M = T M
112 52 111 syl N Fin R CRing M B 1 × ˙ T M = T M
113 112 adantr N Fin R CRing M B s b B 0 s 1 × ˙ T M = T M
114 1cnd N Fin R CRing M B s b B 0 s 1
115 114 subidd N Fin R CRing M B s b B 0 s 1 1 = 0
116 115 fveq2d N Fin R CRing M B s b B 0 s b 1 1 = b 0
117 116 fveq2d N Fin R CRing M B s b B 0 s T b 1 1 = T b 0
118 113 117 oveq12d N Fin R CRing M B s b B 0 s 1 × ˙ T M × ˙ T b 1 1 = T M × ˙ T b 0
119 72 ad2antrl N Fin R CRing M B s b B 0 s s
120 119 114 pncand N Fin R CRing M B s b B 0 s s + 1 - 1 = s
121 120 fveq2d N Fin R CRing M B s b B 0 s b s + 1 - 1 = b s
122 121 fveq2d N Fin R CRing M B s b B 0 s T b s + 1 - 1 = T b s
123 122 oveq2d N Fin R CRing M B s b B 0 s s + 1 × ˙ T M × ˙ T b s + 1 - 1 = s + 1 × ˙ T M × ˙ T b s
124 118 123 oveq12d N Fin R CRing M B s b B 0 s 1 × ˙ T M × ˙ T b 1 1 - ˙ s + 1 × ˙ T M × ˙ T b s + 1 - 1 = T M × ˙ T b 0 - ˙ s + 1 × ˙ T M × ˙ T b s
125 124 oveq1d N Fin R CRing M B s b B 0 s 1 × ˙ T M × ˙ T b 1 1 - ˙ s + 1 × ˙ T M × ˙ T b s + 1 - 1 + Y s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0 = T M × ˙ T b 0 - ˙ s + 1 × ˙ T M × ˙ T b s + Y s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0
126 ringgrp Y Ring Y Grp
127 31 126 syl N Fin R CRing M B Y Grp
128 127 adantr N Fin R CRing M B s b B 0 s Y Grp
129 nnnn0 s s 0
130 0elfz s 0 0 0 s
131 129 130 syl s 0 0 s
132 131 ad2antrl N Fin R CRing M B s b B 0 s 0 0 s
133 65 132 ffvelrnd N Fin R CRing M B s b B 0 s b 0 B
134 8 1 2 3 4 mat2pmatbas N Fin R Ring b 0 B T b 0 Base Y
135 58 61 133 134 syl3anc N Fin R CRing M B s b B 0 s T b 0 Base Y
136 26 5 ringcl Y Ring T M Base Y T b 0 Base Y T M × ˙ T b 0 Base Y
137 38 53 135 136 syl3anc N Fin R CRing M B s b B 0 s T M × ˙ T b 0 Base Y
138 45 47 syl N Fin R CRing M B s b B 0 s mulGrp Y Mgm
139 simprl N Fin R CRing M B s b B 0 s s
140 139 peano2nnd N Fin R CRing M B s b B 0 s s + 1
141 55 10 mulgnncl mulGrp Y Mgm s + 1 T M Base Y s + 1 × ˙ T M Base Y
142 138 140 53 141 syl3anc N Fin R CRing M B s b B 0 s s + 1 × ˙ T M Base Y
143 nn0fz0 s 0 s 0 s
144 129 143 sylib s s 0 s
145 144 ad2antrl N Fin R CRing M B s b B 0 s s 0 s
146 65 145 ffvelrnd N Fin R CRing M B s b B 0 s b s B
147 8 1 2 3 4 mat2pmatbas N Fin R Ring b s B T b s Base Y
148 58 61 146 147 syl3anc N Fin R CRing M B s b B 0 s T b s Base Y
149 26 5 ringcl Y Ring s + 1 × ˙ T M Base Y T b s Base Y s + 1 × ˙ T M × ˙ T b s Base Y
150 38 142 148 149 syl3anc N Fin R CRing M B s b B 0 s s + 1 × ˙ T M × ˙ T b s Base Y
151 26 11 6 7 grpnpncan0 Y Grp T M × ˙ T b 0 Base Y s + 1 × ˙ T M × ˙ T b s Base Y T M × ˙ T b 0 - ˙ s + 1 × ˙ T M × ˙ T b s + Y s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0 = 0 ˙
152 128 137 150 151 syl12anc N Fin R CRing M B s b B 0 s T M × ˙ T b 0 - ˙ s + 1 × ˙ T M × ˙ T b s + Y s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0 = 0 ˙
153 125 152 eqtrd N Fin R CRing M B s b B 0 s 1 × ˙ T M × ˙ T b 1 1 - ˙ s + 1 × ˙ T M × ˙ T b s + 1 - 1 + Y s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0 = 0 ˙
154 12 110 153 3eqtrd N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = 0 ˙