Metamath Proof Explorer


Theorem cayhamlem1

Description: Lemma 1 for cayleyhamilton . (Contributed by AV, 11-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A=NMatR
cayhamlem1.b B=BaseA
cayhamlem1.p P=Poly1R
cayhamlem1.y Y=NMatP
cayhamlem1.r ×˙=Y
cayhamlem1.s -˙=-Y
cayhamlem1.0 0˙=0Y
cayhamlem1.t T=NmatToPolyMatR
cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
cayhamlem1.e ×˙=mulGrpY
Assertion cayhamlem1 NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=0˙

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A=NMatR
2 cayhamlem1.b B=BaseA
3 cayhamlem1.p P=Poly1R
4 cayhamlem1.y Y=NMatP
5 cayhamlem1.r ×˙=Y
6 cayhamlem1.s -˙=-Y
7 cayhamlem1.0 0˙=0Y
8 cayhamlem1.t T=NmatToPolyMatR
9 cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 cayhamlem1.e ×˙=mulGrpY
11 eqid +Y=+Y
12 1 2 3 4 5 6 7 8 9 10 11 chfacfpmmulgsum2 NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=Yi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+Ys+1×˙TM×˙Tbs-˙TM×˙Tb0
13 elfzelz i1si
14 13 zcnd i1si
15 pncan1 ii+1-1=i
16 14 15 syl i1si+1-1=i
17 16 eqcomd i1si=i+1-1
18 17 adantl NFinRCRingMBi1si=i+1-1
19 18 fveq2d NFinRCRingMBi1sbi=bi+1-1
20 19 fveq2d NFinRCRingMBi1sTbi=Tbi+1-1
21 20 oveq2d NFinRCRingMBi1si+1×˙TM×˙Tbi=i+1×˙TM×˙Tbi+1-1
22 21 oveq2d NFinRCRingMBi1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi=i×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+1-1
23 22 mpteq2dva NFinRCRingMBi1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi=i1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+1-1
24 23 oveq2d NFinRCRingMBYi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi=Yi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+1-1
25 24 adantr NFinRCRingMBsbB0sYi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi=Yi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+1-1
26 eqid BaseY=BaseY
27 crngring RCRingRRing
28 27 anim2i NFinRCRingNFinRRing
29 28 3adant3 NFinRCRingMBNFinRRing
30 3 4 pmatring NFinRRingYRing
31 29 30 syl NFinRCRingMBYRing
32 ringabl YRingYAbel
33 31 32 syl NFinRCRingMBYAbel
34 33 adantr NFinRCRingMBsbB0sYAbel
35 elnnuz ss1
36 35 biimpi ss1
37 36 ad2antrl NFinRCRingMBsbB0ss1
38 31 adantr NFinRCRingMBsbB0sYRing
39 38 adantr NFinRCRingMBsbB0sk1s+1YRing
40 28 30 syl NFinRCRingYRing
41 40 3adant3 NFinRCRingMBYRing
42 eqid mulGrpY=mulGrpY
43 42 ringmgp YRingmulGrpYMnd
44 41 43 syl NFinRCRingMBmulGrpYMnd
45 44 adantr NFinRCRingMBsbB0smulGrpYMnd
46 45 adantr NFinRCRingMBsbB0sk1s+1mulGrpYMnd
47 mndmgm mulGrpYMndmulGrpYMgm
48 46 47 syl NFinRCRingMBsbB0sk1s+1mulGrpYMgm
49 elfznn k1s+1k
50 49 adantl NFinRCRingMBsbB0sk1s+1k
51 8 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
52 27 51 syl3an2 NFinRCRingMBTMBaseY
53 52 adantr NFinRCRingMBsbB0sTMBaseY
54 53 adantr NFinRCRingMBsbB0sk1s+1TMBaseY
55 42 26 mgpbas BaseY=BasemulGrpY
56 55 10 mulgnncl mulGrpYMgmkTMBaseYk×˙TMBaseY
57 48 50 54 56 syl3anc NFinRCRingMBsbB0sk1s+1k×˙TMBaseY
58 simpl1 NFinRCRingMBsbB0sNFin
59 58 adantr NFinRCRingMBsbB0sk1s+1NFin
60 27 3ad2ant2 NFinRCRingMBRRing
61 60 adantr NFinRCRingMBsbB0sRRing
62 61 adantr NFinRCRingMBsbB0sk1s+1RRing
63 elmapi bB0sb:0sB
64 63 adantl sbB0sb:0sB
65 64 adantl NFinRCRingMBsbB0sb:0sB
66 65 adantr NFinRCRingMBsbB0sk1s+1b:0sB
67 nnz kk
68 peano2nn ss+1
69 68 nnzd ss+1
70 elfzm1b ks+1k1s+1k10s+1-1
71 67 69 70 syl2an ksk1s+1k10s+1-1
72 nncn ss
73 pncan1 ss+1-1=s
74 72 73 syl ss+1-1=s
75 74 adantl kss+1-1=s
76 75 oveq2d ks0s+1-1=0s
77 76 eleq2d ksk10s+1-1k10s
78 77 biimpd ksk10s+1-1k10s
79 71 78 sylbid ksk1s+1k10s
80 79 expcom skk1s+1k10s
81 80 com13 k1s+1ksk10s
82 49 81 mpd k1s+1sk10s
83 82 com12 sk1s+1k10s
84 83 ad2antrl NFinRCRingMBsbB0sk1s+1k10s
85 84 imp NFinRCRingMBsbB0sk1s+1k10s
86 66 85 ffvelcdmd NFinRCRingMBsbB0sk1s+1bk1B
87 8 1 2 3 4 mat2pmatbas NFinRRingbk1BTbk1BaseY
88 59 62 86 87 syl3anc NFinRCRingMBsbB0sk1s+1Tbk1BaseY
89 26 5 ringcl YRingk×˙TMBaseYTbk1BaseYk×˙TM×˙Tbk1BaseY
90 39 57 88 89 syl3anc NFinRCRingMBsbB0sk1s+1k×˙TM×˙Tbk1BaseY
91 90 ralrimiva NFinRCRingMBsbB0sk1s+1k×˙TM×˙Tbk1BaseY
92 oveq1 k=ik×˙TM=i×˙TM
93 fvoveq1 k=ibk1=bi1
94 93 fveq2d k=iTbk1=Tbi1
95 92 94 oveq12d k=ik×˙TM×˙Tbk1=i×˙TM×˙Tbi1
96 oveq1 k=i+1k×˙TM=i+1×˙TM
97 fvoveq1 k=i+1bk1=bi+1-1
98 97 fveq2d k=i+1Tbk1=Tbi+1-1
99 96 98 oveq12d k=i+1k×˙TM×˙Tbk1=i+1×˙TM×˙Tbi+1-1
100 oveq1 k=1k×˙TM=1×˙TM
101 fvoveq1 k=1bk1=b11
102 101 fveq2d k=1Tbk1=Tb11
103 100 102 oveq12d k=1k×˙TM×˙Tbk1=1×˙TM×˙Tb11
104 oveq1 k=s+1k×˙TM=s+1×˙TM
105 fvoveq1 k=s+1bk1=bs+1-1
106 105 fveq2d k=s+1Tbk1=Tbs+1-1
107 104 106 oveq12d k=s+1k×˙TM×˙Tbk1=s+1×˙TM×˙Tbs+1-1
108 26 34 6 37 91 95 99 103 107 telgsumfz NFinRCRingMBsbB0sYi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+1-1=1×˙TM×˙Tb11-˙s+1×˙TM×˙Tbs+1-1
109 25 108 eqtrd NFinRCRingMBsbB0sYi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi=1×˙TM×˙Tb11-˙s+1×˙TM×˙Tbs+1-1
110 109 oveq1d NFinRCRingMBsbB0sYi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+Ys+1×˙TM×˙Tbs-˙TM×˙Tb0=1×˙TM×˙Tb11-˙s+1×˙TM×˙Tbs+1-1+Ys+1×˙TM×˙Tbs-˙TM×˙Tb0
111 55 10 mulg1 TMBaseY1×˙TM=TM
112 52 111 syl NFinRCRingMB1×˙TM=TM
113 112 adantr NFinRCRingMBsbB0s1×˙TM=TM
114 1cnd NFinRCRingMBsbB0s1
115 114 subidd NFinRCRingMBsbB0s11=0
116 115 fveq2d NFinRCRingMBsbB0sb11=b0
117 116 fveq2d NFinRCRingMBsbB0sTb11=Tb0
118 113 117 oveq12d NFinRCRingMBsbB0s1×˙TM×˙Tb11=TM×˙Tb0
119 72 ad2antrl NFinRCRingMBsbB0ss
120 119 114 pncand NFinRCRingMBsbB0ss+1-1=s
121 120 fveq2d NFinRCRingMBsbB0sbs+1-1=bs
122 121 fveq2d NFinRCRingMBsbB0sTbs+1-1=Tbs
123 122 oveq2d NFinRCRingMBsbB0ss+1×˙TM×˙Tbs+1-1=s+1×˙TM×˙Tbs
124 118 123 oveq12d NFinRCRingMBsbB0s1×˙TM×˙Tb11-˙s+1×˙TM×˙Tbs+1-1=TM×˙Tb0-˙s+1×˙TM×˙Tbs
125 124 oveq1d NFinRCRingMBsbB0s1×˙TM×˙Tb11-˙s+1×˙TM×˙Tbs+1-1+Ys+1×˙TM×˙Tbs-˙TM×˙Tb0=TM×˙Tb0-˙s+1×˙TM×˙Tbs+Ys+1×˙TM×˙Tbs-˙TM×˙Tb0
126 ringgrp YRingYGrp
127 31 126 syl NFinRCRingMBYGrp
128 127 adantr NFinRCRingMBsbB0sYGrp
129 nnnn0 ss0
130 0elfz s000s
131 129 130 syl s00s
132 131 ad2antrl NFinRCRingMBsbB0s00s
133 65 132 ffvelcdmd NFinRCRingMBsbB0sb0B
134 8 1 2 3 4 mat2pmatbas NFinRRingb0BTb0BaseY
135 58 61 133 134 syl3anc NFinRCRingMBsbB0sTb0BaseY
136 26 5 ringcl YRingTMBaseYTb0BaseYTM×˙Tb0BaseY
137 38 53 135 136 syl3anc NFinRCRingMBsbB0sTM×˙Tb0BaseY
138 45 47 syl NFinRCRingMBsbB0smulGrpYMgm
139 simprl NFinRCRingMBsbB0ss
140 139 peano2nnd NFinRCRingMBsbB0ss+1
141 55 10 mulgnncl mulGrpYMgms+1TMBaseYs+1×˙TMBaseY
142 138 140 53 141 syl3anc NFinRCRingMBsbB0ss+1×˙TMBaseY
143 nn0fz0 s0s0s
144 129 143 sylib ss0s
145 144 ad2antrl NFinRCRingMBsbB0ss0s
146 65 145 ffvelcdmd NFinRCRingMBsbB0sbsB
147 8 1 2 3 4 mat2pmatbas NFinRRingbsBTbsBaseY
148 58 61 146 147 syl3anc NFinRCRingMBsbB0sTbsBaseY
149 26 5 ringcl YRings+1×˙TMBaseYTbsBaseYs+1×˙TM×˙TbsBaseY
150 38 142 148 149 syl3anc NFinRCRingMBsbB0ss+1×˙TM×˙TbsBaseY
151 26 11 6 7 grpnpncan0 YGrpTM×˙Tb0BaseYs+1×˙TM×˙TbsBaseYTM×˙Tb0-˙s+1×˙TM×˙Tbs+Ys+1×˙TM×˙Tbs-˙TM×˙Tb0=0˙
152 128 137 150 151 syl12anc NFinRCRingMBsbB0sTM×˙Tb0-˙s+1×˙TM×˙Tbs+Ys+1×˙TM×˙Tbs-˙TM×˙Tb0=0˙
153 125 152 eqtrd NFinRCRingMBsbB0s1×˙TM×˙Tb11-˙s+1×˙TM×˙Tbs+1-1+Ys+1×˙TM×˙Tbs-˙TM×˙Tb0=0˙
154 12 110 153 3eqtrd NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=0˙