Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
coemullem
Next ⟩
coeadd
Metamath Proof Explorer
Ascii
Unicode
Theorem
coemullem
Description:
Lemma for
coemul
and
dgrmul
.
(Contributed by
Mario Carneiro
, 24-Jul-2014)
Ref
Expression
Hypotheses
coefv0.1
⊢
A
=
coeff
F
coeadd.2
⊢
B
=
coeff
G
coeadd.3
⊢
M
=
deg
F
coeadd.4
⊢
N
=
deg
G
Assertion
coemullem
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
coeff
F
×
f
G
=
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
∧
deg
F
×
f
G
≤
M
+
N
Proof
Step
Hyp
Ref
Expression
1
coefv0.1
⊢
A
=
coeff
F
2
coeadd.2
⊢
B
=
coeff
G
3
coeadd.3
⊢
M
=
deg
F
4
coeadd.4
⊢
N
=
deg
G
5
plymulcl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
F
×
f
G
∈
Poly
ℂ
6
dgrcl
⊢
F
∈
Poly
S
→
deg
F
∈
ℕ
0
7
3
6
eqeltrid
⊢
F
∈
Poly
S
→
M
∈
ℕ
0
8
dgrcl
⊢
G
∈
Poly
S
→
deg
G
∈
ℕ
0
9
4
8
eqeltrid
⊢
G
∈
Poly
S
→
N
∈
ℕ
0
10
nn0addcl
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
0
→
M
+
N
∈
ℕ
0
11
7
9
10
syl2an
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
M
+
N
∈
ℕ
0
12
fzfid
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
n
∈
ℕ
0
→
0
…
n
∈
Fin
13
1
coef3
⊢
F
∈
Poly
S
→
A
:
ℕ
0
⟶
ℂ
14
13
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
A
:
ℕ
0
⟶
ℂ
15
14
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
n
∈
ℕ
0
→
A
:
ℕ
0
⟶
ℂ
16
elfznn0
⊢
k
∈
0
…
n
→
k
∈
ℕ
0
17
ffvelcdm
⊢
A
:
ℕ
0
⟶
ℂ
∧
k
∈
ℕ
0
→
A
k
∈
ℂ
18
15
16
17
syl2an
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
n
∈
ℕ
0
∧
k
∈
0
…
n
→
A
k
∈
ℂ
19
2
coef3
⊢
G
∈
Poly
S
→
B
:
ℕ
0
⟶
ℂ
20
19
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
B
:
ℕ
0
⟶
ℂ
21
20
ad2antrr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
n
∈
ℕ
0
∧
k
∈
0
…
n
→
B
:
ℕ
0
⟶
ℂ
22
fznn0sub
⊢
k
∈
0
…
n
→
n
−
k
∈
ℕ
0
23
22
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
n
∈
ℕ
0
∧
k
∈
0
…
n
→
n
−
k
∈
ℕ
0
24
21
23
ffvelcdmd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
n
∈
ℕ
0
∧
k
∈
0
…
n
→
B
n
−
k
∈
ℂ
25
18
24
mulcld
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
n
∈
ℕ
0
∧
k
∈
0
…
n
→
A
k
B
n
−
k
∈
ℂ
26
12
25
fsumcl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
n
∈
ℕ
0
→
∑
k
=
0
n
A
k
B
n
−
k
∈
ℂ
27
26
fmpttd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
:
ℕ
0
⟶
ℂ
28
oveq2
⊢
n
=
j
→
0
…
n
=
0
…
j
29
fvoveq1
⊢
n
=
j
→
B
n
−
k
=
B
j
−
k
30
29
oveq2d
⊢
n
=
j
→
A
k
B
n
−
k
=
A
k
B
j
−
k
31
30
adantr
⊢
n
=
j
∧
k
∈
0
…
n
→
A
k
B
n
−
k
=
A
k
B
j
−
k
32
28
31
sumeq12dv
⊢
n
=
j
→
∑
k
=
0
n
A
k
B
n
−
k
=
∑
k
=
0
j
A
k
B
j
−
k
33
eqid
⊢
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
=
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
34
sumex
⊢
∑
k
=
0
j
A
k
B
j
−
k
∈
V
35
32
33
34
fvmpt
⊢
j
∈
ℕ
0
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
=
∑
k
=
0
j
A
k
B
j
−
k
36
35
ad2antrl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
=
∑
k
=
0
j
A
k
B
j
−
k
37
simp2r
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
¬
j
≤
M
+
N
38
simp2l
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
j
∈
ℕ
0
39
38
nn0red
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
j
∈
ℝ
40
simp3l
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
k
∈
0
…
j
41
elfznn0
⊢
k
∈
0
…
j
→
k
∈
ℕ
0
42
40
41
syl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
k
∈
ℕ
0
43
42
nn0red
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
k
∈
ℝ
44
9
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
N
∈
ℕ
0
45
44
3ad2ant1
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
N
∈
ℕ
0
46
45
nn0red
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
N
∈
ℝ
47
39
43
46
lesubadd2d
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
j
−
k
≤
N
↔
j
≤
k
+
N
48
7
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
M
∈
ℕ
0
49
48
3ad2ant1
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
M
∈
ℕ
0
50
49
nn0red
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
M
∈
ℝ
51
simp3r
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
k
≤
M
52
43
50
46
51
leadd1dd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
k
+
N
≤
M
+
N
53
43
46
readdcld
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
k
+
N
∈
ℝ
54
50
46
readdcld
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
M
+
N
∈
ℝ
55
letr
⊢
j
∈
ℝ
∧
k
+
N
∈
ℝ
∧
M
+
N
∈
ℝ
→
j
≤
k
+
N
∧
k
+
N
≤
M
+
N
→
j
≤
M
+
N
56
39
53
54
55
syl3anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
j
≤
k
+
N
∧
k
+
N
≤
M
+
N
→
j
≤
M
+
N
57
52
56
mpan2d
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
j
≤
k
+
N
→
j
≤
M
+
N
58
47
57
sylbid
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
j
−
k
≤
N
→
j
≤
M
+
N
59
37
58
mtod
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
¬
j
−
k
≤
N
60
simpr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
G
∈
Poly
S
61
60
3ad2ant1
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
G
∈
Poly
S
62
fznn0sub
⊢
k
∈
0
…
j
→
j
−
k
∈
ℕ
0
63
40
62
syl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
j
−
k
∈
ℕ
0
64
2
4
dgrub
⊢
G
∈
Poly
S
∧
j
−
k
∈
ℕ
0
∧
B
j
−
k
≠
0
→
j
−
k
≤
N
65
64
3expia
⊢
G
∈
Poly
S
∧
j
−
k
∈
ℕ
0
→
B
j
−
k
≠
0
→
j
−
k
≤
N
66
61
63
65
syl2anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
B
j
−
k
≠
0
→
j
−
k
≤
N
67
66
necon1bd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
¬
j
−
k
≤
N
→
B
j
−
k
=
0
68
59
67
mpd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
B
j
−
k
=
0
69
68
oveq2d
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
A
k
B
j
−
k
=
A
k
⋅
0
70
14
3ad2ant1
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
A
:
ℕ
0
⟶
ℂ
71
70
42
ffvelcdmd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
A
k
∈
ℂ
72
71
mul01d
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
A
k
⋅
0
=
0
73
69
72
eqtrd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
A
k
B
j
−
k
=
0
74
73
3expia
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
→
k
∈
0
…
j
∧
k
≤
M
→
A
k
B
j
−
k
=
0
75
74
impl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
k
≤
M
→
A
k
B
j
−
k
=
0
76
simpl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
F
∈
Poly
S
77
76
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
→
F
∈
Poly
S
78
1
3
dgrub
⊢
F
∈
Poly
S
∧
k
∈
ℕ
0
∧
A
k
≠
0
→
k
≤
M
79
78
3expia
⊢
F
∈
Poly
S
∧
k
∈
ℕ
0
→
A
k
≠
0
→
k
≤
M
80
77
41
79
syl2an
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
→
A
k
≠
0
→
k
≤
M
81
80
necon1bd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
→
¬
k
≤
M
→
A
k
=
0
82
81
imp
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
¬
k
≤
M
→
A
k
=
0
83
82
oveq1d
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
¬
k
≤
M
→
A
k
B
j
−
k
=
0
⋅
B
j
−
k
84
20
ad3antrrr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
¬
k
≤
M
→
B
:
ℕ
0
⟶
ℂ
85
62
ad2antlr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
¬
k
≤
M
→
j
−
k
∈
ℕ
0
86
84
85
ffvelcdmd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
¬
k
≤
M
→
B
j
−
k
∈
ℂ
87
86
mul02d
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
¬
k
≤
M
→
0
⋅
B
j
−
k
=
0
88
83
87
eqtrd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
∧
¬
k
≤
M
→
A
k
B
j
−
k
=
0
89
75
88
pm2.61dan
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
∧
k
∈
0
…
j
→
A
k
B
j
−
k
=
0
90
89
sumeq2dv
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
→
∑
k
=
0
j
A
k
B
j
−
k
=
∑
k
=
0
j
0
91
fzfi
⊢
0
…
j
∈
Fin
92
91
olci
⊢
0
…
j
⊆
ℤ
≥
0
∨
0
…
j
∈
Fin
93
sumz
⊢
0
…
j
⊆
ℤ
≥
0
∨
0
…
j
∈
Fin
→
∑
k
=
0
j
0
=
0
94
92
93
ax-mp
⊢
∑
k
=
0
j
0
=
0
95
90
94
eqtrdi
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
→
∑
k
=
0
j
A
k
B
j
−
k
=
0
96
36
95
eqtrd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
∧
¬
j
≤
M
+
N
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
=
0
97
96
expr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
→
¬
j
≤
M
+
N
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
=
0
98
97
necon1ad
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
ℕ
0
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
≠
0
→
j
≤
M
+
N
99
98
ralrimiva
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
∀
j
∈
ℕ
0
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
≠
0
→
j
≤
M
+
N
100
plyco0
⊢
M
+
N
∈
ℕ
0
∧
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
:
ℕ
0
⟶
ℂ
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
ℤ
≥
M
+
N
+
1
=
0
↔
∀
j
∈
ℕ
0
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
≠
0
→
j
≤
M
+
N
101
11
27
100
syl2anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
ℤ
≥
M
+
N
+
1
=
0
↔
∀
j
∈
ℕ
0
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
≠
0
→
j
≤
M
+
N
102
99
101
mpbird
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
ℤ
≥
M
+
N
+
1
=
0
103
1
3
dgrub2
⊢
F
∈
Poly
S
→
A
ℤ
≥
M
+
1
=
0
104
103
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
A
ℤ
≥
M
+
1
=
0
105
2
4
dgrub2
⊢
G
∈
Poly
S
→
B
ℤ
≥
N
+
1
=
0
106
105
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
B
ℤ
≥
N
+
1
=
0
107
1
3
coeid
⊢
F
∈
Poly
S
→
F
=
z
∈
ℂ
⟼
∑
k
=
0
M
A
k
z
k
108
107
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
F
=
z
∈
ℂ
⟼
∑
k
=
0
M
A
k
z
k
109
2
4
coeid
⊢
G
∈
Poly
S
→
G
=
z
∈
ℂ
⟼
∑
k
=
0
N
B
k
z
k
110
109
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
G
=
z
∈
ℂ
⟼
∑
k
=
0
N
B
k
z
k
111
76
60
48
44
14
20
104
106
108
110
plymullem1
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
F
×
f
G
=
z
∈
ℂ
⟼
∑
j
=
0
M
+
N
∑
k
=
0
j
A
k
B
j
−
k
z
j
112
elfznn0
⊢
j
∈
0
…
M
+
N
→
j
∈
ℕ
0
113
112
35
syl
⊢
j
∈
0
…
M
+
N
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
=
∑
k
=
0
j
A
k
B
j
−
k
114
113
oveq1d
⊢
j
∈
0
…
M
+
N
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
z
j
=
∑
k
=
0
j
A
k
B
j
−
k
z
j
115
114
sumeq2i
⊢
∑
j
=
0
M
+
N
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
z
j
=
∑
j
=
0
M
+
N
∑
k
=
0
j
A
k
B
j
−
k
z
j
116
115
mpteq2i
⊢
z
∈
ℂ
⟼
∑
j
=
0
M
+
N
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
z
j
=
z
∈
ℂ
⟼
∑
j
=
0
M
+
N
∑
k
=
0
j
A
k
B
j
−
k
z
j
117
111
116
eqtr4di
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
F
×
f
G
=
z
∈
ℂ
⟼
∑
j
=
0
M
+
N
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
z
j
118
5
11
27
102
117
coeeq
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
coeff
F
×
f
G
=
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
119
ffvelcdm
⊢
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
:
ℕ
0
⟶
ℂ
∧
j
∈
ℕ
0
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
∈
ℂ
120
27
112
119
syl2an
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
j
∈
0
…
M
+
N
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
j
∈
ℂ
121
5
11
120
117
dgrle
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
deg
F
×
f
G
≤
M
+
N
122
118
121
jca
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
coeff
F
×
f
G
=
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
k
B
n
−
k
∧
deg
F
×
f
G
≤
M
+
N